在学习深度学习与机器学习的时候,草草安装了环境,但是不懂各个部分的作用,也没掌握具体环境配置的流程,导致现在出现一些问题。
首先安装了jupyter notebook然后能基本运行,学习机器学习的时候没有区分cpu和gpu环境,在学习深度学习时,才开始区分cpu和gpu环境。
通过指令查看pytorch版本为cpu版本,通过重新下载CUDA和CUDNN,并创建新的环境下载gpu版的pytorch。但是通过指令下载的pytorch无论多少次卸载安装都仍然是cpu版本,后来发现由于之前下载的torch是cpu版本的,要重新卸载掉再装gpu的,不然会默认安装cpu版本的torch。
之后发现使用conda语句激活环境再运行代码,在jupyternotebook里仍然是显示cpu环境,后来得知是因为我使用的是cpu版本的jupyternotebook,要重新安装gpu环境的jupyternotebook才行。
打算之后再进行环境的完善。
当前的环境如下,可以看到torch版本是gpu的。