视觉SLAM学习打卡【7-1】-视觉里程计·特征点法

视觉里程计根据相邻图像信息估计出粗略的相机运动(即位姿)。视觉里程计算法主要分为两类:特征点法直接法。本节主要介绍基于特征点法的特征提取、匹配 & 估计相机位姿、深度信息.

一、特征提取&匹配

特征点:关键点+描述子
关键点:角点 / 区块 / 边缘
描述子:描述关键点周围像素信息
—— —— —— —— —— —— —— ——
ORB特征:Oriented FAST关键点+BRIEF描述子
FAST角点:像素p半径为3的圆上的16个像素点存在N个的亮度大于/小于p亮度的120%/80%,即认为p为角点.
改进的 Oriented FAST角点

  • FAST角点不具有方向性和尺度不变性
  • 尺度不变性 由构建图像金字塔,并在每一层上检测角点实现
  • 方向性 计算图像灰度质心,连接灰度质心和几何中心得到方向向量
    图像块矩( I(x,y)为像素灰度值 ): m p q = ∑ x , y ∈ B x p y q I ( x , y ) , p , q = { 0 , 1 } . m_{pq}=\sum_{x,y\in B}x^py^qI(x,y),\quad p,q=\{0,1\}. mpq=x,yBxpyqI(x,y),p,q={0,1}.质心: C = ( m 10 m 00 , m 01 m 00 ) C=(\frac{m_{10}}{m_{00}},\frac{m_{01}}{m_{00}}) C=(m00m10,m00m01)方向向量: θ = arctan ⁡ ( m 01 / m 10 ) \theta=\arctan(m_{01}/m_{10}) θ=arctan(m01/m10)

BRIEF描述子:二进制描述子,描述向量由许多0、1构成。取关键点附近的n两个随即像素对p、q,若p>q,取1;反之,取0。
—— —— —— —— —— —— —— ——
特征匹配原理:外观相似的特征点具有相似的描述子(两个关键点周围的描述子在向量空间上的距离相近)

  • 暴力匹配法
  • 快速近似最近邻(FLANN)

相似距离度量范数

  • 欧氏距离:适用于浮点型描述子
  • 汉明距离:适用于二进制描述子,汉明距离指不同位数的个数

特征点匹配以后得到的是两个像素坐标系下的点p1和p2

二、回顾相机投影顺序

在这里插入图片描述

三、估计相机位姿&空间点深度

1. 2D-2D

对极几何求位姿,三角测量求深度
(1)对极几何
归一化平面坐标用的x1,x2
x 2 = R x 1 + t x_2=Rx_1+t x2=Rx1+t两边都左乘t^ ,t^乘以一个向量,相当于t和这个向量做叉乘(t自己做叉积为0)
t ∧ x 2 = t ∧ R x 1 t^\wedge x_2=t^\wedge Rx_1 tx2=tRx1等式两边同左乘 x 2 T x_{2}^{T} x2T
x 2 T t ∧ R x 1 = 0 x_2^Tt^\wedge Rx_1=0 x2TtRx1=0其中,本质矩阵E=t^R
像素坐标用的p1,p2
p 2 T K − T t ∧ R K − 1 p 1 = 0 p_2^TK^{-T}t^{\wedge}RK^{-1}\boldsymbol{p}_1=0 p2TKTtRK1p1=0其中,基础矩阵F= K − T t ∧ R K − 1 K^{-T}t^{\wedge}RK^{-1} KTtRK1
因此,对极约束可以写为: X 2 T E X 1 = P 2 T F P 1 = 0 X_{2}^{T}EX_{1}=P_{2}^{T}FP_{1}=0 X2TEX1=P2TFP1=0
(2)求解本质矩阵E
采用八点法,即用8对匹配点组成线性方程组AX=0. E = ( e 1 e 2 e 3 e 4 e 5 e 6 e 7 e 8 e 9 ) \left.E=\left(\begin{matrix}e_{1}&e_{2}&e_{3}\\e_{4}&e_{5}&e_{6}\\e_{7}&e_{8}&e_{9}\end{matrix}\right.\right) E= e1e4e7e2e5e8e3e6e9 一对匹配点满足以下对极约束 ( u 2 , v 2 , 1 ) ( e 1 e 2 e 3 e 4 e 5 e 6 e 7 e 8 e 9 ) ( u 1 v 1 1 ) = 0. \left(u_2,v_2,1\right)\begin{pmatrix}e_1&e_2&e_3\\e_4&e_5&e_6\\e_7&e_8&e_9\end{pmatrix}\begin{pmatrix}u_1\\v_1\\1\end{pmatrix}=0. (u2,v2,1) e1e4e7e2e5e8e3e6e9 u1v11 =0.把E写成向量形式 e = [ e 1 , e 2 , e 3 , e 4 , e 5 , e 6 , e 7 , e 8 , e 9 ] T e=[e_{1},e_{2},e_{3},e_{4},e_{5},e_{6},e_{7},e_{8},e_{9}]^{\mathrm{T}} e=[e1,e2,e3,e4,e5,e6,e7,e8,e9]T则对极约束可以写成如下线性形式 [ u 2 u 1 , u 2 v 1 , u 2 , v 2 u 1 , v 2 v 1 , v 2 , u 1 , v 1 , 1 ] ⋅ e = 0. [u_2u_1,u_2v_1,u_2,v_2u_1,v_2v_1,v_2,u_1,v_1,1]\cdot e=0. [u2u1,u2v1,u2,v2u1,v2v1,v2,u1,v1,1]e=0.当采用8个点时(条件:系数矩阵满秩。因为用8个方程求9个未知量,当且仅当有n-r=9-8=1个极大无关组,自由度为8) ( u 2 1 u 1 1 u 2 1 v 1 1 u 2 1 v 2 1 u 1 1 v 2 1 v 1 1 v 2 1 u 1 1 v 1 1 1 u 2 2 u 1 2 u 2 2 v 1 2 u 2 2 v 2 2 u 1 2 v 2 2 v 1 2 v 2 2 u 1 2 v 1 2 1 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ u 2 8 u 1 8 u 2 8 v 1 8 u 2 8 v 2 8 u 1 8 v 2 8 v 1 8 v 2 8 u 1 8 v 1 8 1 ) ( e 1 e 2 e 3 e 4 e 5 e 6 e 7 e 8 e 9 ) = 0. \begin{pmatrix}u_2^1u_1^1&u_2^1v_1^1&u_2^1&v_2^1u_1^1&v_2^1v_1^1&v_2^1&u_1^1&v_1^1&1\\u_2^2u_1^2&u_2^2v_1^2&u_2^2&v_2^2u_1^2&v_2^2v_1^2&v_2^2&u_1^2&v_1^2&1\\\vdots&\vdots&\vdots&\vdots&\vdots&\vdots&\vdots&\vdots&\vdots\\u_2^8u_1^8&u_2^8v_1^8&u_2^8&v_2^8u_1^8&v_2^8v_1^8&v_2^8&u_1^8&v_1^8&1\end{pmatrix}\begin{pmatrix}e_1\\e_2\\e_3\\e_4\\e_5\\e_6\\e_7\\e_8\\e_9\end{pmatrix}=0. u21u11u22u12u28u18u21v11u22v12u28v18u21u22u28v21u11v22u12v28u18v21v11v22v12v28v18v21v22v28u11u12u18v11v12v18111 e1e2e3e4e5e6e7e8e9 =0.
(3)SVD分解拆开E得R、t
E = U Σ V T E=U\Sigma V^{T} E=UΣVT奇异值分解出来是4个解,但是只有一个对于两个相机而言,都是正的深度。奇异值SVD分解数学推导参考
(4)单应矩阵H

  • 单应矩阵(Homography)的意义在于避免“退化”现象造成基础矩阵自由度下降的问题。一般出现退化现象是因为特征点共面或者相机发生纯旋转。
  • 对于纯旋转的情况,E=t^R,纯旋转意味着t是0,那么E就是0,根据E恢复R就完全无从谈起。
  • 对于特征点共面的情况,可以由其中两个点表示面上其余所有点,使得自由度下降。
  • 现实数据包含噪声,若用八点法求解,本质矩阵E多出来的自由度将有噪声决定,为避免退化,采用单应矩阵H。

单应矩阵的求解及SVD分解此处不作为重点 详细推导可参考
(5)总结

  • 本质矩阵E
    x 2 T t ∧ R x 1 = 0 x_2^Tt^\wedge Rx_1=0 x2TtRx1=0,x是归一化相机平面上的点,E有5个自由度(E存在尺度等价性,即 X 2 T E X 1 = 0 X_{2}^{T}EX_{1}=0 X2TEX1=0等式两边乘任何数都不影响结果, E = t Λ R E=t^{\Lambda}R E=tΛR,t3维,R3维,6-1=5),最少五个点,但是用8点法.
  • 基础矩阵F
    p 2 T K − T t ∧ R K − 1 p 1 = 0 p_2^TK^{-T}t^{\wedge}RK^{-1}p_1=0 p2TKTtRK1p1=0,p是像素平面上的点,F有7个自由度( F 3 × 3 F_{3\times3} F3×3秩为2,9-2=7),最少7个点,一般也用8点法.
  • 单应矩阵H
    p 2 = K ( R − t n T d ) K − 1 p 1 \begin{aligned}p_2&=K\left(R-\frac{tn^T}{d}\right)K^{-1}p_1\end{aligned} p2=K(RdtnT)K1p1,p是像素平面上的点,H有8个自由度(实际处理中令 H 3 × 3 H_{3\times3} H3×3中的 h 9 h_{9} h9=1),最少四个匹配点,因为每对匹配点可以提供两个约束。

(6)三角测量

  • 有同一个点在两个图里的归一化相机坐标x1和x2
  • 现在都变到相机坐标系下,也就是都乘以各自的第三维s
  • 把s2x2变换到s1x1相机坐标系下,因为是同一个点,所以肯定相同
    s 1 x 1 = s 2 R x 2 + t s_1\boldsymbol{x}_1=s_2\boldsymbol{R}x_2+t s1x1=s2Rx2+t
  • 两边都左乘x1^ 0 = s 2 x 1 ∧ R x 2 + x 1 ∧ t 0=s_2\boldsymbol{x}_1^\wedge R\boldsymbol{x}_2+\boldsymbol{x}_1^\wedge\boldsymbol{t} 0=s2x1Rx2+x1t 其中,R、t、x1、x2均已知,只剩下一个未知量s2.

2. 3D-2D(PnP)

已知点的3D坐标和这三个点的2D坐标
(1)直接线性变化法DLT
3D:世界坐标系下的齐次坐标 p = ( X , Y , Z , 1 ) p=(X,Y,Z,1) p=(X,Y,Z,1)
2D:相机归一化坐标系下的坐标 x = ( u 1 , v 1 , 1 ) x=(u_{1},v_{1},1) x=(u1,v1,1)
s ( u 1 v 1 1 ) = ( t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 10 t 11 t 12 ) ( X Y Z 1 ) s\begin{pmatrix}u_1\\v_1\\1\end{pmatrix}=\begin{pmatrix}t_1&t_2&t_3&t_4\\t_5&t_6&t_7&t_8\\t_9&t_{10}&t_{11}&t_{12}\end{pmatrix}\begin{pmatrix}X\\Y\\Z\\1\end{pmatrix} s u1v11 = t1t5t9t2t6t10t3t7t11t4t8t12 XYZ1 定义中间的3x4矩阵为增广矩阵[R|t]
用最后一行消去s
u 1 = t 1 X + t 2 Y + t 3 Z + t 4 t 9 X + t 10 Y + t 11 Z + t 12 , v 1 = t 5 X + t 6 Y + t 7 Z + t 8 t 9 X + t 10 Y + t 11 Z + t 12 . u_{1}=\frac{t_{1}X+t_{2}Y+t_{3}Z+t_{4}}{t_{9}X+t_{10}Y+t_{11}Z+t_{12}},\quad v_{1}=\frac{t_{5}X+t_{6}Y+t_{7}Z+t_{8}}{t_{9}X+t_{10}Y+t_{11}Z+t_{12}}. u1=t9X+t10Y+t11Z+t12t1X+t2Y+t3Z+t4,v1=t9X+t10Y+t11Z+t12t5X+t6Y+t7Z+t8.用下式简化表示 t 1 = ( t 1 , t 2 , t 3 , t 4 ) T , t 2 = ( t 5 , t 6 , t 7 , t 8 ) T , t 3 = ( t 9 , t 10 , t 11 , t 12 ) T \boldsymbol{t}_1=(t_1,t_2,t_3,t_4)^\mathrm{T},\boldsymbol{t}_2=(t_5,t_6,t_7,t_8)^\mathrm{T},\boldsymbol{t}_3=(t_9,t_{10},t_{11},t_{12})^\mathrm{T} t1=(t1,t2,t3,t4)T,t2=(t5,t6,t7,t8)T,t3=(t9,t10,t11,t12)T则可得两个约束条件 t 1 T P − t 3 T P u 1 = 0 , t 2 T P − t 3 T P v 1 = 0. \begin{matrix}t_1^TP-t_3^TPu_1=0,\\\\t_2^TP-t_3^TPv_1=0.\end{matrix} t1TPt3TPu1=0,t2TPt3TPv1=0.得用6对匹配点求出增广矩阵,需要对左边的3*3的矩阵块用一个最好的旋转矩阵来近似(R存在正交约束,而求解时只把其当成简单方程组),可以用QR分解完成。
(2)P3P
3对3D-2D匹配点
3D:世界坐标系下的坐标
2D:相机坐标系下坐标
此处只给出P3P求解思路:通过3个相似、余弦定理得到两个约束方程,利用吴消元法求出解析解,得到空间点在相机坐标系下的3D坐标,转化为3D-3D问题求位姿(ICP).
(3)Bundle Adjustment(BA)
把相机位姿和空间点位置都看成优化变量(此类问题统称为BA),构建重投影误差,让重投影误差(观测值减去预测值)最小化。
3D:世界坐标系下的齐次坐标 P i = [ x i , y i , z i ] P_{i}=[x_{i},y_{i},z_{i}] Pi=[xi,yi,zi]
2D:像素坐标系下的坐标 u i = [ u i , v i ] u_{i}=[u_{i},v_{i}] ui=[ui,vi]
s i [ u i v i 1 ] = K T [ X i Y i Z i 1 ] s_i\begin{bmatrix}u_i\\v_i\\1\end{bmatrix}=\boldsymbol{K}\boldsymbol{T}\begin{bmatrix}X_i\\Y_i\\Z_i\\1\end{bmatrix} si uivi1 =KT XiYiZi1 写成矩阵形式 s i u i = K T P i s_{i}u_{i}=KTP_{i} siui=KTPi
转化为最小二乘问题 T ∗ = arg ⁡ min ⁡ T 1 2 ∑ i = 1 n ∥ u i − 1 s i K T P i ∥ 2 2 . T^{*}=\arg\min_{T}\frac{1}{2}\sum_{i=1}^{n}\left\|u_{i}-\frac{1}{s_{i}}KTP_{i}\right\|_{2}^{2}. T=argTmin21i=1n uisi1KTPi 22.

3. 3D-3D(ICP)

已知两组匹配好的3D点,进行位姿估计.
P = { p 1 , ⋯   , p n } , P ′ = { p 1 ′ , ⋯   , p n ′ } P=\{p_{1},\cdots,p_{n}\},P^{\prime}=\{p_{1}^{\prime},\cdots,p_{n}^{\prime}\} P={p1,,pn},P={p1,,pn} ∀ i , p i = R p i ′ + t . \forall i,p_i=Rp_i^{\prime}+t. i,pi=Rpi+t.(1)SVD方式
定义第i对误差项 e i = p i − ( R p i ′ + t ) . e_{i}=p_{i}-(Rp_{i}^{\prime}+t). ei=pi(Rpi+t).构造最小二乘问题 min ⁡ R , t 1 2 ∑ i = 1 n ∥ ( p i − ( R p i ′ + t ) ) ∥ 2 2 . \min_{\boldsymbol{R},\boldsymbol{t}}\frac12\sum_{i=1}^n\|(p_i-(\boldsymbol{Rp_i}^{\prime}+\boldsymbol{t}))\|_2^2. R,tmin21i=1n(pi(Rpi+t))22.定义两组质心(不带下标) p = 1 n ∑ i = 1 n ( p i ) , p ′ = 1 n ∑ i = 1 n ( p i ′ ) . p=\frac1n\sum_{i=1}^{n}(p_{i}),\quad p^{\prime}=\frac1n\sum_{i=1}^{n}(p_{i}^{\prime}). p=n1i=1n(pi),p=n1i=1n(pi).对误差函数做如下处理 1 2 ∑ i = 1 n ∥ p i − ( R p i ′ + t ) ∥ 2 = 1 2 ∑ i = 1 n ∥ p i − R p i ′ − t − p + R p ′ + p − R p ′ ∥ 2 = 1 2 ∑ i = 1 n ∥ ( p i − p − R ( p i ′ − p ′ ) ) + ( p − R p ′ − t ) ∥ 2 = 1 2 ∑ i = 1 n ( ∥ p i − p − R ( p i ′ − p ′ ) ∥ 2 + ∥ p − R p ′ − t ∥ 2 + 2 ( p i − p − R ( p i ′ − p ′ ) ) T ( p − R p ′ − t ) ) . \begin{aligned} \frac{1}{2}\sum_{i=1}^{n}\left\|p_{i}-\left(Rp_{i}^{\prime}+t\right)\right\|^{2}& =\frac{1}{2}\sum_{i=1}^{n}\left\|p_{i}-Rp_{i}{}^{\prime}-t-p+Rp^{\prime}+p-Rp^{\prime}\right\|^{2} \\ &=\frac{1}{2}\sum_{i=1}^{n}\left\|\left(p_{i}-p-R\left(p_{i}^{\prime}-p^{\prime}\right)\right)+\left(p-Rp^{\prime}-t\right)\right\|^{2} \\ &=\frac{1}{2}\sum_{i=1}^{n}\left(\left\|p_{i}-p-R\left(p_{i}\right.^{\prime}-p^{\prime}\right)\right\|^{2}+\left\|p-Rp^{\prime}-t\right\|^{2}+ \\ &\left.2\left(p_{i}-p-R\left(p_{i}^{\prime}-p^{\prime}\right)\right)^{T}\left(p-Rp^{\prime}-t\right)\right). \end{aligned} 21i=1npi(Rpi+t)2=21i=1npiRpitp+Rp+pRp2=21i=1n(pipR(pip))+(pRpt)2=21i=1n( pipR(pip) 2+pRpt2+2(pipR(pip))T(pRpt)).交叉项 ( p i − p − R ( p i ′ − p ′ ) ) \left(p_{i}-p-R\left(p_{i}^{\prime}-p^{\prime}\right)\right) (pipR(pip))求和后为0,优化目标函数化简为 min ⁡ R , t J = 1 2 ∑ i n ∥ p i − p − R ( p i ′ − p ′ ) ∥ 2 + ∥ p − R p ′ − t ∥ 2 . \min_{R,t}J=\frac{1}{2}\sum_{i}^{n}\left\|p_{i}-p-R\left(p_{i}^{\prime}-p^{\prime}\right)\right\|^{2}+\left\|p-Rp^{\prime}-t\right\|^{2}. R,tminJ=21inpipR(pip)2+pRpt2.可以发现,左边一项只和R有关,右边一项和R、t有关。因此,可以先根据左边项求出最优R,再通过 t ∗ = p − R p ′ . t^{*}=p-Rp^{\prime}. t=pRp.求解t
计算去质心坐标 q i = p i − p , q i ′ = p i ′ − p ′ q_{i}=p_{i}-p,\quad q_{i}^{\prime}=p_{i}^{\prime}-p^{\prime} qi=pip,qi=pip则R优化项变为 R ∗ = arg ⁡ min ⁡ R 1 2 ∑ i = 1 n ∥ q i − R q i ′ ∥ 2 . R^{*}=\arg\min_{R}\frac{1}{2}\sum_{i=1}^{n}\left\|q_{i}-Rq_{i}^{\prime}\right\|^{2}. R=argRmin21i=1nqiRqi2.展开 1 2 ∑ i = 1 n ∥ q i − R q i ′ ∥ 2 = 1 2 ∑ i = 1 n ( q i T q i + q i ′ T R T R q i ′ − 2 q i T R q i ′ ) . \frac{1}{2}\sum_{i=1}^{n}\left\|q_{i}-Rq_{i}^{\prime}\right\|^{2}=\frac{1}{2}\sum_{i=1}^{n}\left(q_{i}^{\mathrm{T}}q_{i}+q_{i}^{\prime\mathrm{T}}R^{\mathrm{T}}Rq_{i}^{\prime}-2q_{i}^{\mathrm{T}}Rq_{i}^{\prime}\right). 21i=1nqiRqi2=21i=1n(qiTqi+qiTRTRqi2qiTRqi).前两项与R无关,因为第二项R和自身转置乘积为I(R为正交矩阵),就是优化第三项,则优化目标函数再变为 ∑ i = 1 n − q i T R q i ′ = ∑ i = 1 n − t r ( R q i ′ q i T ) = − t r ( R ∑ i = 1 n q i ′ q i T ) \sum_{i=1}^{n}-q_{i}^{\mathrm{T}}Rq_{i}^{\prime}=\sum_{i=1}^{n}-\mathrm{tr}\left(Rq_{i}^{\prime}q_{i}^{\mathrm{T}}\right)=-\mathrm{tr}\left(R\sum_{i=1}^{n}q_{i}^{\prime}q_{i}^{\mathrm{T}}\right) i=1nqiTRqi=i=1ntr(RqiqiT)=tr(Ri=1nqiqiT)(迹的性质: a T b = t r a ( b a T ) a^Tb=tra(ba^T) aTb=tra(baT)
之后定义了W( W = ∑ i = 1 n q i q i ′ T W=\sum_{i=1}^{n}q_{i}q_{i}^{\prime T} W=i=1nqiqiT),对W进行SVD分解,W满秩的时候, R = U V T R=UV^{T} R=UVT,然后根据R恢复t。为什么 R = U V T R=UV^{T} R=UVT
(2)非线性优化
类似于PnP,转化为最小二乘问题,以迭代方式求最优解

  • 34
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: 《视觉SLAM十四讲》第三章主要介绍了视觉SLAM中的关键技术——特征提取和描述子。本章首先介绍了特征点的概念和特征点的选择原则。特征点即图像中具有鲁棒性和区分度的点,可以通过对其进行检测和描述来进行特征匹配和跟踪。在进行特征提取时,作者介绍了常见的特征检测算,如Harris角点检测、SIFT和SURF算等,并对其进行了比较和分析。 接着,本章详细阐述了特征描述子的概念和作用。特征描述子是对特征点周围区域的图像信息进行编码,以实现特征匹配和跟踪。常见的特征描述子包括SIFT、SURF和ORB等。作者从描述子的表示形式、计算方式和匹配方等方面进行了介绍,并对它们进行了比较和评价。同时,还提到了基于二进制描述子的方,如BRIEF、BRISK和FREAK等。 在特征匹配方面,本章介绍了特征描述子匹配的基本原理和流程。以基于特征点视觉SLAM为例,作者详细解释了特征点的匹配过程,包括特征点的选择、特征点描述子匹配和筛选等步骤。并介绍了如何通过验证特征点的三角化和PnP求解来估计相机的位姿。 此外,本章还介绍了一些特定场景下的特征点选择和提取策略,如动态环境下的特征点追踪和关键帧选择等。 综上所述,《视觉SLAM十四讲》第三章主要介绍了特征提取和描述子在视觉SLAM中的重要性和应用。通过对特征点的检测和描述,可以实现特征匹配和跟踪,为后续的相机位姿估计和建图提供基础。该章内容详细且通俗易懂,对于学习和理解视觉SLAM有着重要的指导作用。 ### 回答2: 《视觉SLAM十四讲-Ch3》主要介绍了视觉SLAM(同时定位与建图)技术的基本原理和实现方。本章主要涵盖了三维几何表示和变换、相机模型和相机姿态以及特征提取与匹配等内容。 首先,本章介绍了三维几何表示和变换的概念。通过介绍欧氏空间中的点、向量和坐标变换,深入解释了相机在三维空间中的位置和朝向的表示方式。同时,引入了齐次坐标和投影矩阵的概念,为后续的相机模型和姿态估计打下了基础。 其次,本章详细讲解了相机模型和相机姿态的原理与应用。其中,介绍了针孔相机模型,分析了图像坐标和相机坐标之间的映射关系。通过投影矩阵的推导,给出了透视投影和仿射投影的公式,并解释了相机焦距和主点的含义。此外,还介绍了如何通过计算相机的外参矩阵来估计相机的姿态,以及如何将图像坐标转换为相机坐标。 最后,本章介绍了特征提取与匹配的技术。首先,介绍了角点和边缘点的概念,以及如何利用差分和梯度计算来检测图像中的角点和边缘点。然后,介绍了如何通过特征描述符来表示图像中的特征点,并通过特征匹配算找到两幅图像之间的对应关系。特征提取与匹配是视觉SLAM中非常重要的步骤,对于后续的相机定位和建图至关重要。 综上所述,《视觉SLAM十四讲-Ch3》通过系统地介绍了视觉SLAM技术的基本概念和实现方,包括三维几何表示和变换、相机模型和相机姿态的原理与应用,以及特征提取与匹配的技术。这些内容为读者深入理解和掌握SLAM技术提供了很好的基础。 ### 回答3: 视觉SLAM(Simultaneous Localization and Mapping)是一种通过计算机视觉技术,实现机器智能的同时实时定位和地图构建的方。在《视觉SLAM十四讲》第三讲中,主要介绍了视觉SLAM的基本概念和关键技术。 首先,讲解了视觉SLAM的理论基础,包括自我运动估计和地图构建两个部分。自我运动估计是通过相邻帧之间的视觉信息,计算相机在三维空间中的运动,从而实现机器的实时定位;地图构建是通过对场景中特征点的观测和跟踪,建立起一个三维空间中的地图。这两个过程相互影响,通过不断迭代优化,实现高精度的定位和地图构建。 接着,讲解了基于特征的视觉SLAM。特征提取与描述是建立视觉SLAM系统的关键步骤,通过提取场景中的特征点,并为其生成描述子,来实现特征点的匹配和跟踪。同时,还介绍了一些常用的特征点提取和匹配算,如FAST、SIFT等。 在SLAM框架方面,本节还介绍了基于视觉的前端和后端优化。前端主要负责实时的特征跟踪和估计相机运动,后端则是通过优化技术,对前端输出的轨迹和地图进行优化求解,从而提高系统的精度和鲁棒性。 最后,本节提到了几个视觉SLAM的应用场景,如自主导航、增强现实等。这些应用对于实时高精度的定位和地图建立都有着很高的要求,因此,视觉SLAM的技术在这些领域有着广泛的应用前景。 总的来说,《视觉SLAM十四讲》第三讲对视觉SLAM的基本概念和关键技术进行了系统的介绍。理论基础、特征提取与描述、SLAM框架和应用场景等方面的内容都给出了详细的解释和案例,有助于读者更好地理解和应用视觉SLAM技术。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值