关于云服务器上pytorch固定随机种子无法复现结果的问题

文章讲述了在使用PyTorch进行深度学习时,为了确保实验结果可复现,通常会设置随机种子。然而,在笔记本和云服务器上,即使设置了种子,结果仍然可能不一致。问题在于CUBLAS的工作空间配置和是否使用确定性算法。通过设置`torch.use_deterministic_algorithms(True)`和环境变量`CUBLAS_WORKSPACE_CONFIG`,可以确保结果的可复现性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章目录


关于云服务器上pytorch固定随机种子无法复现结果的问题

当我在自己的笔记本电脑上的时候,用py文件写的代码,用:

import numpy
import torch
import random

seed = 666
random.seed(seed)
numpy.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
os.environ['PYTHONHASHSEED'] = str(seed)

这样的代码,就能保证结果可复现了。

但是当在ipynb文件里的时候,好像还是没法固定,每次跑出来结果还是不一样,当时就很懵,不知道啥原因,但是问题不大,用py文件就行了。

然后最近在云服务器上用.py跑的时候,神奇的事情发生了,用了上面代码固定随机种子,第一个epoch的结果可以完全复现,然后莫名其妙开始飘了,导致后面的epoch结果都不一样了,固定不住啊。

后来搜索了一下发现,较新版本的pytorch有自动检测是否可复现的功能,就是说如果你的代码结果是不可复现的他就会报错,并且提示你要怎么该才能让他可以复现,简而言之就是加上:

torch.use_deterministic_algorithms(True)

然后你运行,就可以知道你的结果是否可以复现了。

然后我在服务器上试了一下,果然报错了,然后照着报错加了一行:

os.environ['CUBLAS_WORKSPACE_CONFIG']=':4096:8'

好了,至此结果完全可以复现,不会乱飘了。

所以我用到的完整代码如下:

import numpy
import torch
import random

seed = 666
random.seed(seed)
numpy.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
os.environ['PYTHONHASHSEED'] = str(seed)
os.environ['CUBLAS_WORKSPACE_CONFIG']=':4096:8'
torch.use_deterministic_algorithms(True)

参考:
pytorch如何确保 可重复性/每次训练结果相同(固定了随机种子,为什么还不行)?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Icy Hunter

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值