citespace基本操作

本文探讨了信息技术领域中聚类分析和时间线图的最新研究成果,通过高被引文献展示技术基础,并揭示了研究领域内的关注度变化,帮助读者把握发展趋势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

 

 

 

 

 

 

 

 

 

 

聚类分析  时间线图   这些结果都是高被引文献的相关呈现结果,代表该领域的文献基础 

 

下面可以看看该project的前沿领域

 

选择keywords 和term    go!

 

 

 

 

 

 

 

调整显示方式

 

 

 

 

 

 

生成凸线图:表示 在某个研究领域或者时间段内 ,大家对某个领域或者某个词的关注度突然增高,凸显前沿方向的转变       以此来发现热点

 

 

 

 

### 解决CiteSpace聚类结果过于密集的方法 当面对CiteSpace聚类结果过于密集的情况时,可以通过调整多个参数来实现稀疏化效果。具体方法如下: #### 参数设置优化 通过修改Control Panel中的各项参数,能够有效控制节点的数量和连接强度,从而降低图表的复杂度。 - **Thresholds(阈值)**:适当提高节点和连线的阈值可以显著减少不必要的数据点,使最终呈现更加简洁明了[^1]。 ```python # 设置更高的阈值以过滤低频项 threshold_node = 5 # 增加节点出现次数的最低标准 threshold_link = 0.7 # 提高链接权重的标准 ``` - **Pruning(剪枝策略)**:选择合适的剪枝方式有助于去除冗余路径,保持核心结构清晰可见。推荐采用“Pathfinder Network Scaling”选项来进行高效简化处理[^2]。 #### 显示配置微调 除了上述全局性的调节手段外,在可视化界面内还可以进一步精细化管理各个元素的表现形式。 - **Cluster Labels(集群标签)**:对于那些因空间有限而未能充分展示的信息,可通过延长标签栏位的方式确保重要描述得以完整展现;必要时可尝试更换不同的布局模式或字体大小以便于阅读理解[^3]。 - **Selection Criteria(选择条件)**:针对特定研究需求定制化的筛选机制允许用户聚焦关注领域内的关键要素,排除干扰因素的影响。例如,设定最小文献量限制能避免过小规模群体占据过多视觉资源[^4]。 通过以上措施综合运用,应当能够在很大程度上改善CiteSpace生成的知识图谱拥挤杂乱的现象,达到理想的效果。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

生信小博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值