多因素cox回归结果解释 第二十八讲 R语言-Cox比例风险模型1 - 知乎 (zhihu.com)

SPSS单因素回归,多因素cox回归详细解答 (360doc.com)

 第二十八讲 R语言-Cox比例风险模型1 - 知乎 (zhihu.com)

input

> head(phe_final_3)
           event time sex HECW1 KLHL13 KCNG1 USP2 ASB2 KLHL4 KCNS1 RNF128 KCTD1 FBXO15 CBLC TRIM55 KCNS2
GSM1820739     0 2926   1   Low    Low  High  Low  Low   Low   Low    Low   Low   High  Low   High   Low
GSM1820740     1  305   1  High    Low   Low High  Low   Low  High    Low   Low    Low  Low   High  High
GSM1820741     1  557   1   Low    Low  High  Low High   Low   Low    Low   Low    Low  Low    Low   Low
GSM1820742     1  151   1   Low    Low   Low  Low  Low   Low   Low    Low   Low   High  Low    Low   Low
GSM1820743     1 1404   1   Low    Low  High  Low High   Low   Low    Low   Low    Low  Low   High   Low
GSM1820744     1  718   1   Low   High   Low  Low  Low   Low   Low    Low  High    Low  Low    Low   Low

#单个基因cox 回归分析(多因素)
library("survival")
library("survminer")
res.cox <- coxph(Surv(time, event) ~ KLHL13+HECW1+sex, data = phe_final_3)
res.cox
summary(res.cox)

查看结果 

> res.cox
Call:
coxph(formula = Surv(time, event) ~ KLHL13 + HECW1 + sex, data = phe_final_3)

               coef exp(coef)  se(coef)      z     p
KLHL13Low  0.004591  1.004602  0.318455  0.014 0.988
HECW1Low  -0.371525  0.689682  0.329181 -1.129 0.259
sex1       0.337075  1.400844  0.327291  1.030 0.303

Likelihood ratio test=2.67  on 3 df, p=0.4457
n= 112, number of events= 76 
   (因为不存在,64个观察量被删除了)

 查看结果 

> summary(res.cox)
Call:
coxph(formula = Surv(time, event) ~ KLHL13 + HECW1 + sex, data = phe_final_3)

  n= 112, number of events= 76 
   (因为不存在,64个观察量被删除了)

               coef exp(coef)  se(coef)      z Pr(>|z|)
KLHL13Low  0.004591  1.004602  0.318455  0.014    0.988
HECW1Low  -0.371525  0.689682  0.329181 -1.129    0.259
sex1       0.337075  1.400844  0.327291  1.030    0.303

          exp(coef) exp(-coef) lower .95 upper .95
KLHL13Low    1.0046     0.9954    0.5382     1.875
HECW1Low     0.6897     1.4499    0.3618     1.315
sex1         1.4008     0.7139    0.7376     2.661

Concordance= 0.534  (se = 0.035 )
Likelihood ratio test= 2.67  on 3 df,   p=0.4
Wald test            = 2.65  on 3 df,   p=0.4
Score (logrank) test = 2.67  on 3 df,   p=0.4

SPSS单因素回归,多因素cox回归详细解答 (360doc.com)

第二十八讲 R语言-Cox比例风险模型1 - 知乎 (zhihu.com)

R语言cox分析结果解读与整理_哔哩哔哩_bilibili 

coef是模型中的相应因素的系数

exp(coef)是风险因子HR  大于1 促进结局 小于1 抑制结局

下面是不同检验对应的p值,评价模型的稳定性

Concordance= 0.534  (se = 0.035 )
Likelihood ratio test= 2.67  on 3 df,   p=0.4
Wald test            = 2.65  on 3 df,   p=0.4
Score (logrank) test = 2.67  on 3 df,   p=0.4

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

生信小博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值