SPSS单因素回归,多因素cox回归详细解答 (360doc.com)
第二十八讲 R语言-Cox比例风险模型1 - 知乎 (zhihu.com)
input
> head(phe_final_3)
event time sex HECW1 KLHL13 KCNG1 USP2 ASB2 KLHL4 KCNS1 RNF128 KCTD1 FBXO15 CBLC TRIM55 KCNS2
GSM1820739 0 2926 1 Low Low High Low Low Low Low Low Low High Low High Low
GSM1820740 1 305 1 High Low Low High Low Low High Low Low Low Low High High
GSM1820741 1 557 1 Low Low High Low High Low Low Low Low Low Low Low Low
GSM1820742 1 151 1 Low Low Low Low Low Low Low Low Low High Low Low Low
GSM1820743 1 1404 1 Low Low High Low High Low Low Low Low Low Low High Low
GSM1820744 1 718 1 Low High Low Low Low Low Low Low High Low Low Low Low
#单个基因cox 回归分析(多因素)
library("survival")
library("survminer")
res.cox <- coxph(Surv(time, event) ~ KLHL13+HECW1+sex, data = phe_final_3)
res.cox
summary(res.cox)
查看结果
> res.cox
Call:
coxph(formula = Surv(time, event) ~ KLHL13 + HECW1 + sex, data = phe_final_3)
coef exp(coef) se(coef) z p
KLHL13Low 0.004591 1.004602 0.318455 0.014 0.988
HECW1Low -0.371525 0.689682 0.329181 -1.129 0.259
sex1 0.337075 1.400844 0.327291 1.030 0.303
Likelihood ratio test=2.67 on 3 df, p=0.4457
n= 112, number of events= 76
(因为不存在,64个观察量被删除了)
查看结果
> summary(res.cox)
Call:
coxph(formula = Surv(time, event) ~ KLHL13 + HECW1 + sex, data = phe_final_3)
n= 112, number of events= 76
(因为不存在,64个观察量被删除了)
coef exp(coef) se(coef) z Pr(>|z|)
KLHL13Low 0.004591 1.004602 0.318455 0.014 0.988
HECW1Low -0.371525 0.689682 0.329181 -1.129 0.259
sex1 0.337075 1.400844 0.327291 1.030 0.303
exp(coef) exp(-coef) lower .95 upper .95
KLHL13Low 1.0046 0.9954 0.5382 1.875
HECW1Low 0.6897 1.4499 0.3618 1.315
sex1 1.4008 0.7139 0.7376 2.661
Concordance= 0.534 (se = 0.035 )
Likelihood ratio test= 2.67 on 3 df, p=0.4
Wald test = 2.65 on 3 df, p=0.4
Score (logrank) test = 2.67 on 3 df, p=0.4
SPSS单因素回归,多因素cox回归详细解答 (360doc.com)
第二十八讲 R语言-Cox比例风险模型1 - 知乎 (zhihu.com)
coef是模型中的相应因素的系数
exp(coef)是风险因子HR 大于1 促进结局 小于1 抑制结局
下面是不同检验对应的p值,评价模型的稳定性
Concordance= 0.534 (se = 0.035 )
Likelihood ratio test= 2.67 on 3 df, p=0.4
Wald test = 2.65 on 3 df, p=0.4
Score (logrank) test = 2.67 on 3 df, p=0.4