2)题目:回归分析与相关分析的区别和练习是什么?
区别:
(1) 在回归分析中,y 被称为因变量,处在被解释的特殊地位,而在相关分析中,x 与y 处于平等的地位,即研究x 与 y的密切程度和研究y与 x 的密切程度是一致的;
(2) 相关分析中,x 与y 都是随机变量,而在回归分析中,y 是随机变量,x 可以是随机变量,也可以是非随机的,通常在回归模型中,总是假定 x 是非随机的;
(3)相关分析的研究主要是两个变量之间的密切程度,而回归分析不仅可以揭 示 x 对 y 的影响大小,还可以由回归方程进行数量上的预测和控制.
(4) 相关分析是研究两个或两个以上处于同等地位的随机变量间的相关关系 的统计分析方法。
(5)回归分析是确定两种或两种以上变量间相互依赖的定量关系的一种统计 分析方法。运用十分广泛。
联系:
(1) 回归分析和相关分析都是研究变量间关系的统计学课题。
(2) 在专业研究上,有一定联系的两个变量之间是否存在直线关系以及如何求
得直线回归方程等问题,需进行直线相关分析和回归分析。
(3) 从研究的目的来说:若仅仅为了了解两变量之间呈直线关系的密切程度和
方向,宜选用线性相关分析;若仅仅为了建立由自变量推算因变量的直线回归方 程,宜选用直线回归分析.
4)题目:多元线性回归方程有哪些基本假定?为什么要求多元线性回归方程模型满足一些基本的假定?当这些假定不满足时对回归模型有什么影响?
基本假定:
(1)解释变量一般是非随机变量。
(2)误差等方差及不相关假定(G—M 条件):
(3)误差正态分布的假定条件为:
(4)n>p,即要求样本容量个数多于解释变量个数。
原因:
满足这些基本假定是为了确保计算的可靠性。
影响:
(1) 估计标准误差可能严重低估σ的真实值 (2) 样本方差可能严重低估参数β的真实值 (3) 估计回归系数不真实 (4) F 检验和 t
检验不再有效 (5) 根据最小二乘估计量的预测将无效
8)题目:试述向前引入法、向后剔除法和逐步筛选法的思想方法。 向前引入法、向后剔除法和逐步筛选法各有哪些优缺点。
(1)向前引入法
**思想方法:**从一个变量开始,每次引入一个对 y 影响显著的变量,直到无法引入
为止。这种方法的要点是从一个变量开始,将回归变量逐个引入回归方程,它要
先计算 y 同各个变量的相关系数,对于相关系数绝对值较大的变量,对其偏回归
平方和做显著性检验。R 语言第一次作业
- 优点:只考虑引入,不考虑剔除。
- 缺点:不能反映后来变化的情况。
(2)向后剔除法
**思想方法:**从包含全部 p 个变量的回归方程中,根据判断,每次剔除一个对 y 影
响不显著的变量,直到无法剔除为止。
- 优点:可以分多次剔除对 Y 影响不显著的变量,防止变量遗失;可以在变量不多且不显著变量不多时选用,可以节省运行时间成本,减少一些计算量。若对一些不重要变量,一开始就不引入,这样便可以减少一些计算量。
- 缺点:一开始把全部自变量都引入回归方程,这样计算量比较大 。
(3)逐步筛选法
**思想方法:**在所考虑的全部变量中,按其对因变量 y 作用的显著程度的大小,挑
选一个最重要的变量,建立只包含这个变量的回归方程;接着对其他变量计算偏
回归平方和,引入一个显著性的变量,建立具有两个变量的回归方程
- 优点:所得到回归方程所有得到的的变量都是显著的变量。这种方法和全部子集法的方法在一般情况下是很好的,特别是整个模型满足线性回归的基本假定时效果较好。
- 缺点:逐步回归法则是一种粗暴的手段,它无视自变量之间的相互关系,完全是数据导向。