🙋来了来了 !接上上一部分~~
🐬 💮 🍊
🦅前一章 第一部分https://blog.csdn.net/qq_53131867/article/details/134126654
呼呼呼~⭐️ 本章思维导图出炉~~
需要的uu可以免费下载领取噢~~ 🌷
https://download.csdn.net/download/qq_53131867/88541387
🌷概要~~ 🚩
🐬首先介绍的是接收机自主正直性检测
这一大节 1️⃣主要讲了什么是自主正直性检测 怎么样的算法是好的算法 提出了RAIM算法 主要就是通过设置门限值来判断哪些值不合格从而完成我们的完好性的检测 2️⃣以及一些检测方法 比如 伪距残余检测法 通过残余量来进行门限的比较 比如最小平方差残余法 最大解分离法 这一节需要有比较扎实的概率论的知识! 需要我们理解~
🐋 接着介绍的是多普勒定速
从多普勒频移的定义出发,可以知道伪距变化率能够反映用户之间的相对速度,然后接收机就可以从中解算出用户的运动速度 当然伪距变化率介绍了两种方法解算 接着得出了定速方程 最后比较了一下定速和定位之间的关系
🐟最后讲的是定时 授时 与校频
主要讲了这三者的概念 以及授时与校频的一些方法~ 归纳一下就是通过各种方法进行校对我们的时间 保证时间的准确性
CH5 GPS定位原理和精度分析(第二部分)
文章目录
5.5 接收机自主正直性监测
我们在1.5节定义了一个定位系统的正直性,它指的是系统在出现故障而不适合于导航时能及时警告用户的能力,而这些故障可能是卫星上的电子故障,卫星播发的卫星星历与时钟模型错误、异常大气层延时、多路径以及接收机故障等。在各种异常测量误差可能会随时发生的假定下,正直性监测功能就是将异常定位误差的发生控制在一定范围和一定概率之内。需要强调的是,尽管定位错误一般是由测量错误造成的,并且监测定位错误的方法很多也是通过监测测量错误来实现的,但是正直性所真正关心的是定位错误而不是卫星的距离测量错误。
5.5.1 正直性检测的概念
2.5节曾提到,卫星播发的导航电文包含一定的正直性信息,比如卫星健康状况和URA值等。然而,因为GPS地面监控部分一般需要15分钟至2小时的时间来判定某颗卫星是否存在故障、鉴定故障原因、决定解决方案直至采取纠正措施,所以这一监测过程通常远远不能满足民用航空等一些高安全性的导航系统对正直性的实时要求。尽管不同安全、精度等级的导航系统对正直性的要求有所差异,但在10秒钟甚至在3秒钟内完成监测故障到警告用户这一整个过程则属于比较常规的要求。
系统完好性检测主要从三个方面入手:
🌺(1)建立一个地面监测站网络,以专门用于监测GPS卫星的健康状况,然后将有关卫星正直性的监测结果通过某种形式传送给用户接收机。
🌿(2)执行接收机自主正直性监测(RAIM),让用户接收机自身对卫星测量值进行正直性监测。 尽管一个监测站网络比单个用户接收机拥有更丰富的资源与信息,这使得其正直性监测更为准确、迅速,但是因为监测站通常难以知道用户接收机所实际遭受的多路径和当地的电磁干扰等具体情况,所以它不能替代RAIM。只有用户接收机本身才有机会将各种当地、实际的信息综合起来,并以此检测它的卫星信号测量值是否出现差错
🔆(3)第三种方案是建议在卫星上设置正直性监测功能,让卫星自己监测其所发射的信号,然后再将监测结果播发给用户。
RAIM算法
下面的对RAIM算法进行详细阐述:
广义上的 RAIM算法泛指那些用于定位、定时接收机的算法,而对专门应用于授时、校频的GPS时间、频率接收机(见5.7节)来讲,它们的正直性监测功能可特称为时间接收机自主正直性监测(TRAIM) RAIM通常体现为接收机内部的一些软件算法,让接收机在进行定位计算的同时执行这些RAIM算法。尽管RAIM算法层出不穷,但是它们的基本原理大都出于检查各个卫星测量值之间的一致性。 RAIM算法本质上需要回答以下两个问题:1️⃣是判断一组测量数据是否包含有错误测量值;2️⃣是如果有,那么判断哪个测量值是错误的。可见,RAIM实际上是故障检测与排除(FDE)算法在GPS定位中的应用。
一个好的RAIM算法不但应该具有较高的正确检测出故障状态的可靠性能,而且又具有较高的正确鉴定出错误测量值的可分性能。此外,有些RAIM还可能对当前GPS定位值的可靠程度进行估算,例如估算定位结果误差或者误差均方差等。
为了检查各个测量值之间的一致性,RAIM算法需要有冗余信息。卫星测量值个数的冗余度越高,并且卫星的几何分布越好,则RAIM算法的可靠性和可分性通常就越高。 一般来说,只有当接收机在同一时刻至少获取五个卫星测量值时,RAIM算法才能有效地执行。因此,除了具有可靠性和可分性之外,RAIM算法还有一个有效性问题,即接收机在所有可能发生的各种情况下能有效进行RAIM运算与分析的概率。若利用伽利略卫星和GLONASS系统中的卫星测量值,或者借助气压表、罗兰(LORAN)导航、惯性传感等非卫星测量值,则GPS接收机的RAIM有效性可得到提高
🌱RAIM算法通常是通过构筑、计算一个或多个侧试量,然后将测试量(或者其绝对值)的大小与预先设定的门限值进行比较: 若测试量超过门限值,则相应的测量数据组或者某个测量值是错误的;否则,一切正常。 可见,若门限过紧,则RAIM算法容易将一些原本正常的测量值和系统状态假报成错误与故障,从而造成虚警(FA);反过来,若门限过松,则RAM算法又容易变得检测不出错误测量值和故障状态,从而造成漏警(MD) 这样,一个RAIM算法的性能与其门限值的大小有着极大关系,而门限值大小的选取也时常成为算法的关键与难点。
🌺 一般来说,一个系统对RAIM算法的虚警率预先有一定要求,而一个决定门限值大小的通常做法是让RAIM算法首先满足所要求的虚警率。在相同虚警率的条件下,不同RAIM算法各自有着互不相同的漏警率。一个较好的RAIM算法在满足所规定的低虚警率的同时,它又有着较低的漏警率。
5.5.2 伪距残余检测法
这些定位前和定位后伪距残余在一定程度上提供了关于伪距测量值和定位质量好坏的一些信息。因为卫星和用户的运动均呈一定的连续性,所以同一卫星在不同时刻的残余值应该有一定的可比性,并且不同卫星在同–时刻的残余值也应该可以相互比拟 检查定位前与定位后残余值的RAIM方法,分别称为 定位前与定位后残余检测法,它们通常是将残余绝对值与一个预先设定的门限值进行比较,从而检测并排除错误测量值。门限值大小的设置一般需要通过大量的实际测试与性能分析来得到优化。
定位前与定位后这两种残余检测法各有优缺点。若某一时刻接收机只有四个(或者少于四个)卫星测量值, 则方程式(5.36)不再超定,定位后的所有四个残余分量值应该刚好全部等于零,这使得定位后残余检测法失去了有效性。 在有足够多个卫星测量值的情况下,假如某测量值确实出错, 那么该错误测量值会首先破坏定位结果,接着影响各个卫星测量值的定位后残余,最后可能导致错误测量值的问题严重性看起来变低,同时又使其他正确测量值看起来变得略欠正常。 在虚警率保持不变的条件下,定位后残余检测法的另一个缺点使得其漏警率变高。
⭐️具体补充一下
伪距残余法是一种利用接收机接收到的卫星信号的伪距观测值来进行定位的方法。 在定位过程中,我们需要解算接收机与卫星之间的距离,而伪距观测值就是接收机所测量到的信号传播时间与光速之积,即到达时间乘以传播速度。
🌴定位前使用伪距残余法时,通常会收集更多的卫星测量值,从而使得方程组是超定的。这样,可以通过最小二乘法或其他数学方法来求解接收机的位置。
🎄但是,在定位后如果接收机只有四个或少于四个卫星测量值时,方程组就不再是超定的,也就是说方程的个数等于未知数的个数。在这种情况下,定位后的所有四个残余分量值应该刚好全部等于零。这是因为方程组此时正好是可解的,所以解是唯一的,残差等于零。
🌳换句话说,当接收机只有四个或少于四个卫星测量值时,定位后的残余计算法失去了有效性,因为无法通过残差来进行位置修正。这也意味着无法确定接收机的位置,因为无法在残差信息中提取有效的定位修正信息。
与定位后残余检测法不同,定位前残余检测法并不要求测量值的个数必须多于四个,但它的最大缺点在于其依赖上一时刻的定位结果。 如果上一时刻的定位值不准确,或者由于用户的高速运动使其当前位置远离上一时刻的定位值,那么定位前残余检测法就很难断定一个绝对值较大的残余是否真的是由于测量错误所引起的。为了尽量使上一时刻的定位值接近用户的当前位置,我们一般可根据上一时刻的用户运动速度来推测用户的当前位置,然后用这个位置预测值来计算定位前残余。考虑到接收机钟差是各个测量值残余的公共部分,各个定位前残余的平均值通常可作为当前时刻的接收机钟差估计值,然后将此平均值从各个定位前残余中减掉最后将它们与残余门限值进行比较。
对于定位后残余检测法,我们事实上并不一定要先求解出定位方程式(5.36)后才可以计算定位后残余。假定用户位置与接收机钟差的变化量很小,那么定位前后的几何矩阵G可以认为是相等的,牛顿迭代法迭代一次后即可收敛,而方程式(5.36)的加权最小二乘法的解可表达成
[
Δ
x
Δ
y
Δ
z
Δ
δ
t
u
]
=
(
G
T
C
G
)
−
1
G
T
C
b
(
5.68
)
\begin{bmatrix}\Delta x\\\Delta y\\\Delta z\\\Delta\delta t_u\end{bmatrix}=(\boldsymbol{G}^\mathrm{T}\boldsymbol{C}\boldsymbol{G})^{-1}\boldsymbol{G}^\mathrm{T}\boldsymbol{C}\boldsymbol{b}\quad (5.68)
ΔxΔyΔzΔδtu
=(GTCG)−1GTCb(5.68)
其中b为定位前残余向量。我们在此选用加权最小二乘法求解定位方程式,其目的是为了使这里的分析具有更广泛的代表性。不难理解,定位后残余向量b等于
b
^
=
b
−
G
[
Δ
x
Δ
y
Δ
z
Δ
δ
t
u
]
=
b
−
G
(
G
T
C
G
)
−
1
G
T
C
b
=
S
b
(
5
.
69
)
\left.\hat{b}=\boldsymbol{b}-\boldsymbol{G}\left[\begin{array}{c}\Delta x\\\Delta y\\\Delta z\\\Delta\boldsymbol{\delta}t_u\end{array}\right.\right]=\boldsymbol{b}-\boldsymbol{G}(\boldsymbol{G}^\mathrm{T}C\boldsymbol{G})^{-1}\boldsymbol{G}^\mathrm{T}\boldsymbol{C}\boldsymbol{b}=\boldsymbol{S}\boldsymbol{b}\quad\quad\quad\quad\quad\quad\quad(\boldsymbol{5}.69)
b^=b−G
ΔxΔyΔzΔδtu
=b−G(GTCG)−1GTCb=Sb(5.69)
其中,矩阵S定义为
S
=
I
−
G
(
G
T
C
G
)
−
1
G
T
C
(
5.70
)
S=I-G(G^{\mathrm{T}}CG)^{-1}G^{\mathrm{T}}C\quad\quad(5.70)
S=I−G(GTCG)−1GTC(5.70)
式(5.69)表明,不必求解定位方程式,我们可通过矩阵S而将定位前残余b直接转换成定位后残余b ,然后检查定位后残余b中的各个分量值。若某个残余分量的绝对值大于门限值,则相应的测量值被认为是错误的。在排除错误测量值之后,我们可重新进行定位后残余检测和定位计算。
5.5.3 最小平方和残余法
最小平方残余法是一种故障检测法,它一般需要与上一小节的残余检测法一起来完成故障的检测与排除。
5.5.4 最大解分离法
这小节将简单介绍一下另一种用来检测故障的最大解分离法。假如接收机有N个卫星测量值,那么这N个测量值可分成N组,每组包含相互不同的N-1个测量值。由于每组仍有足够多个用以实现 GPS定位的测量值,因而我们总共可得N个不同的定位值。假定这N个测量值中最多只有一个是错误的,那么若这N个测量值全部正确,则这N个定位值应该相差不大,并且一起集中在接收机真实位置值附近;否则,若其中一个测量值出错,则只有一个不利用该测量值的定位值是正确的,而其他N-1个定位值均受到此错误测量值的影响,从而导致这N个定位值不再集中在接收机真实位置值附近而显得比较发散,最大解分离法计算这N个定位解两两之间的相互距离,并将其中的最大距离作为检测量,然后通过比较这个最大距离检测量与一个相应门限值的大小,从中判断测量值是否全部正常。 如果最大距离值大于门限值,那么最大解分离法断定某个测量值出错,此时的定位结果就相应地被认为是不可靠的。
最大解分离法的缺点很明显,比如它需要很大的计算量,并且一般不能直接将错误测量值从其他正常值中分离出去。
5.6 多普勒定速
1.1节曾中提到,子午卫星系统通过测量卫星信号的多普勒频移来实现定位,然而由相对运动引起的多普勒频移可更好地被用来实现定速。关于多普勒频移及其形成机制的介绍,可参阅4.2.2节。
具体还是在前面几章
CH4 https://blog.csdn.net/qq_53131867/article/details/134126654
CH1 https://blog.csdn.net/qq_53131867/article/details/133867537
我们将式(5.27)对时间求导,得
ρ
˙
(
n
)
=
r
˙
(
n
)
+
δ
f
u
−
δ
f
(
n
)
+
ε
ρ
˙
(
n
)
(
5.72
)
\dot{\rho}^{(n)}=\dot{r}^{(n)}+\delta f_{u}-\delta f^{(n)}+\varepsilon_{\dot{\rho}}^{(n)}\quad (5.72)
ρ˙(n)=r˙(n)+δfu−δf(n)+ερ˙(n)(5.72)
r ( n ) = ( ν ( n ) − ν ) ⋅ I ( n ) ( 5.73 ) r^{(n)}=\left(\nu^{(n)}-\nu\right)\cdot\boldsymbol{I}^{(n)}\quad (5.73) r(n)=(ν(n)−ν)⋅I(n)(5.73)
以上两式表明了伪距变化率ρ(n)反映着卫星与用户之间的相对运动速度﹐而在获得多个卫星伪距变化率测量值的条件下,接收机有可能从中解算出用户运动速度v。由于伪距测量值比较粗糙,因而伪距变化率通常并不是通过对相邻时刻的伪距进行差分得到的。GPS接收机的多普勒频移测量值fd(n)能更精确地体现伪距变化率ρ(n)的大小,它们两者之间的关系为
ρ
˙
(
n
)
=
−
λ
f
d
(
n
)
(
5.74
)
\dot{\rho}^{(n)}=-\lambda f_{d}^{(n)}\quad (5.74)
ρ˙(n)=−λfd(n)(5.74)
另外,由多普勒频移与积分多普勒测量值之间的关系式(4.21)表明,对积分多普勒(或者说载波相位)测量值进行差分也可得到伪距变化率,即
ρ
˙
(
n
)
=
λ
(
ϕ
k
(
n
)
−
ϕ
k
−
1
(
n
)
)
(
5.75
)
\dot{\rho}^{(n)}=\lambda\bigl(\phi_{k}^{(n)}-\phi_{k-1}^{(n)}\bigr)\quad(5.75)
ρ˙(n)=λ(ϕk(n)−ϕk−1(n))(5.75)
其中,下标“k”与“k-1”均代表测量历元。事实上,载波相位测量值的差分与多普勒频移测量值之间还是有区别的: 🌿 多普勒频移测量值反映着用户在某一时刻的瞬时速度,但是这种测量值相对来说比较粗糙;相反,🌺 载波相位是GPS 接收机给出的一种精度最高的距离测量值,它的差分反映着用户在这一差分时段内的平均速度。 这就是说虽然载波相位测量值的差分在反映用户运动状态变化方面会有一定的延时,但是由它计算得到的速度值比较平滑一点。多普勒频移与载波相位这两种测量值均可用来求解用户的运动速度,而基于接收机所输出的测量值状况和用户的动态模型等因素考虑,不同接收机的定速算法可能对两者有不同的选择倾向。
5.7 定时 授时 与校频
🐾对于定时:
GPS 接收机能同时实现定位和定时。准确地讲定时指的是根据参考时间标准对本地时钟进行校准的过程。 在定位算法求解出接收机钟差δtu后,我们将δtu代人式(4.1)就可得到接收机定位时刻tu(t)所对应的GPS时间t 。若想要知道GPS时间t所对应的协调世界时(UTC),则将t值替代式(3.25)中的tE就得到UTC值。由GPS接收机得到的UTC时间的误差均方差在20 ns左右。
🎻 授时 校频:
授时指的是将标准时间播发到异地的过程,而校频在这一节里笼统地指授频与比较两频率。我们一般将专门用于提供时间与频率信号的GPS接收机分别称为GPS时间接收机与频率接收机,以区别于通常意义上的GPS定位接收机。
GPS时间与频率接收机通常安装在一固定点静止不动,其位置坐标可以是已知的,也可以由该接收机启动后首先自动地进行自我定位得到。时间接收机有的直接给出精确时间与日期,有的输出与UTC同步的秒脉冲(PPS)。我们知道,频率与时间互成倒数。频率接收机通常有一个温控晶体(OCXO)或者铆原子等高性能振荡器,随而产生一个如5 MHz、10 MHz等标准频率的信号,或者提供一个应用于通信系统中的1.544 MHz、2.048 MHz等频率信号。
根据接收机对卫星测量值的不同运作方式,GPS授时与校频方法可大致分为单向测量、共视测量和载波相位技术三种。
🍊 单向测量技术是用GPS 接收机接收GPS 卫星信号,对卫星测量值进行处理,然后输出可用于授时或校频的标准时间或标准频率信号。若接收机的天线位置已知,则接收机只要利用一颗卫星的伪距测量值就可以从式(5.27)中求解出接收机钟差δtu;否则,接收机可利用多个卫星的测量值,再根据本章前面介绍过的定位、定时算法计算出δtu得到δtu后,时间或频率接收机就可以输出相应的时间或频率信号。
可见,单向测量技术的本质是用GPS时间来校准时钟或振荡器频率。 因为GPS地面监控部分的一部分功能是保持GPS 时间与UTC同步,所以GPS接收机输出的时间和频率信号具有很高的长期精度。
🍎 共视测量技术 是指地球上任意两地(或多地)的GPS接收机对同一颗卫星的时间信号同时进行测量,从而比较位于此两地的时钟或振荡器频率 如图5.9所示,位于A和B两地的GPS接收机同时测量卫星n的信号,那么两地的接收机分别有如下的伪距观测方程式:
ρ
A
(
n
)
−
r
A
(
n
)
=
δ
t
A
−
δ
t
(
n
)
+
I
A
(
n
)
+
T
A
(
n
)
+
ε
ρ
A
(
n
)
ρ
B
(
n
)
−
r
B
(
n
)
=
δ
t
B
−
δ
t
(
n
)
+
I
B
(
n
)
+
T
B
(
n
)
+
ε
ρ
B
(
n
)
(
5.78
)
\begin{aligned}\rho_A^{(n)}-r_A^{(n)}&=\delta t_A-\delta t^{(n)}+I_A^{(n)}+T_A^{(n)}+\varepsilon_{\rho A}^{(n)}\\\rho_B^{(n)}-r_B^{(n)}&=\delta t_B-\delta t^{(n)}+I_B^{(n)}+T_B^{(n)}+\varepsilon_{\rho B}^{(n)}\end{aligned}\quad (5.78)
ρA(n)−rA(n)ρB(n)−rB(n)=δtA−δt(n)+IA(n)+TA(n)+ερA(n)=δtB−δt(n)+IB(n)+TB(n)+ερB(n)(5.78)
其中,ρA(n)与ρB(n)分别为两接收机对卫星n的伪距测量值,两接收机到卫星的几何距离rA(n)与rB(n)是已知的,而两地的电离层和对流层延时值可根据4.3节中的相关公式进行估算。两接收机的测量数据经交换后对比得
(
ρ
A
(
n
)
−
r
A
(
n
)
)
−
(
ρ
B
(
n
)
−
r
B
(
n
)
)
=
(
∂
t
A
−
δ
t
B
)
+
Δ
I
A
B
(
n
)
+
Δ
T
A
B
(
n
)
+
Δ
ε
ρ
A
B
(
n
)
(
5.79
)
\left(\rho_{A}^{(n)}-r_{A}^{(n)}\right)-\left(\rho_{B}^{(n)}-r_{B}^{(n)}\right)=(\partial t_{A}-\delta t_{B})+\Delta I_{AB}^{(n)}+\Delta T_{AB}^{(n)}+\Delta\varepsilon_{\rho AB}^{(n)}\quad (5.79)
(ρA(n)−rA(n))−(ρB(n)−rB(n))=(∂tA−δtB)+ΔIAB(n)+ΔTAB(n)+ΔερAB(n)(5.79)
其中,等号右边第一项(δtA-δtB)为接收机A与B的钟差之差。在计算出位于A与B两地的GPS接收机时钟之差后,我们就可以对所关心的分别处于A与B两地的两时钟进行间接比较。可见,共视法的原理有点类似于4.4节中的差分GPS。当两接收机相距较近时,它们两者的测量误差公共部分就基本上能被抵消掉,于是共视法就能取得更好的比较效果.
🍒载波相位技术是利用GPS双频接收机以单向或者共视形式对卫星的载波相位信号进行测量,其目的是在国际性的时钟与频率比较时尽量降低卫星测量误差。
🌈ok,完结~ (●ˇ∀ˇ●)点个赞 点个赞~