精密定位系统——单差,双差,三差

精密定位系统

🌞这篇blog主要介绍一下精密定位系统中的单差,双差,三差~

阅读之前,一定要知道各差的具体的内容
比如
🍎单差 只涉及两个接收机在单个时刻对同一颗卫星的测量值,他是站间(接收机之间)对同一颗卫星测量值的一次差分
🍒双差 每个双差测量值涉及两个接收机在单个时刻对2颗卫星的测量值,对两颗卫星的单差进行差分,即接收机和星间各求一次差分。
🍊三差涉及两个接收机两个时刻两颗卫星的载波相位测量值,它对两个测量时刻的双差再进行差分,以最终消除周整模糊度这一未知参量。

🤔同时想想每一种差分 具体的目的是什么,同时带来了什么问题?
🐬开始吧~

☘️精密相对定位系统:

基准站并不播发关于GPS测量值的差分校正量,而是直接播发它的GPS测量值,然后让用户接收机将这些测量值与其自身对卫星的测量值经差分运算组合起来,最后利用组合后的测量值求解出基线向量而完成相对定位。

下面就介绍一下单差 双差 和三差

在这里插入图片描述

单差

只涉及两个接收机在单个时刻对同一颗卫星的测量值,他是站间(接收机之间)对同一颗卫星测量值的一次差分

🌼可根除:卫星钟差

🌴基本消除:大气延时误差

具体分析

波长为单位的接收机 u u u r r r对卫星 i i i的载波相位测量值可分别表达成
ϕ u ( i ) = λ − 1 ( r u ( i ) − l u ( i ) + T u ( i ) ) + f ( δ t u − δ t ( i ) ) + N u ( i ) + ε ϕ , μ ( i ) ( 7.13 A ) ϕ r ( i ) = λ − 1 ( r r ( i ) − I r ( i ) + T r ( i ) ) + f ( δ t r − δ t ( i ) ) + N r ( i ) + ε ϕ , r ( i ) ( 7.13 B ) \begin{aligned}\phi_u^{(i)}&=\lambda^{-1}\left(r_u^{(i)}-l_u^{(i)}+T_u^{(i)}\right)+f\left(\delta t_u-\delta t^{(i)}\right)+N_u^{(i)}+\varepsilon_{\phi,\mu}^{(i)}&(7.13\mathrm{A})\\\phi_r^{(i)}&=\lambda^{-1}\left(r_r^{(i)}-I_r^{(i)}+T_r^{(i)}\right)+f\left(\delta t_r-\delta t^{(i)}\right)+N_r^{(i)}+\varepsilon_{\phi,r}^{(i)}&(7.13\mathrm{B})\end{aligned} ϕu(i)ϕr(i)=λ1(ru(i)lu(i)+Tu(i))+f(δtuδt(i))+Nu(i)+εϕ,μ(i)=λ1(rr(i)Ir(i)+Tr(i))+f(δtrδt(i))+Nr(i)+εϕ,r(i)(7.13A)(7.13B)

两式相减得:
ϕ u r ( i ) = λ − 1 ( r u r ( i ) − I u r ( i ) + T u r ( i ) ) + f δ t u r + N u r ( i ) + ε ϕ , u r ( i ) \phi_{ur}^{(i)}=\lambda^{-1}\left(r_{ur}^{(i)}-I_{ur}^{(i)}+T_{ur}^{(i)}\right)+f\delta t_{ur}+N_{ur}^{(i)}+\varepsilon_{\phi,ur}^{(i)} ϕur(i)=λ1(rur(i)Iur(i)+Tur(i))+fδtur+Nur(i)+εϕ,ur(i)
式(7.15)表明,卫星钟差 δ t ( i ) \delta t^{(i)} δt(i)在单差后被彻底消除, 然而 单差测量噪声 ε ϕ , u r ( i ) \varepsilon_{\phi,ur}^{(i)} εϕ,ur(i)的均方差却增大到原载波相位测量噪声 ε ϕ , u ( i ) \varepsilon_{\phi,u}^{(i)} εϕ,u(i) 或( ε ϕ , r ( i ) \varepsilon_{\phi,r}^{(i)} εϕ,r(i))均方差的√2倍。 接收机钟差差异 δ t u r \delta t_{ur} δtur对不同卫星来说是相同的,它将通过下一小节的双差而被消除。

若用户与基站相距不远,单差电离层延时约等于0,两者位于同一高度时,单差对电流层的延时也接近于0.

最后就变成了
ϕ u r ( i ) = λ − 1 r u r ( i ) + f δ t u r + N u r ( i ) + ε ϕ , u r ( i ) ( 7.17 ) \phi_{ur}^{(i)}=\lambda^{-1}r_{ur}^{(i)}+f\delta t_{ur}+N_{ur}^{(i)}+\varepsilon_{\phi,ur}^{(i)}\quad(7.17) ϕur(i)=λ1rur(i)+fδtur+Nur(i)+εϕ,ur(i)(7.17)
当接收机锁定某一卫星信号时,它对该卫星信号的载波相位测量值中的周整模糊度值就保持不变;反过来,当接收机对信号失锁后再重捕时,周整模糊度在信号失锁前后通常不再是同一个值。 有时接收机表面上对信号保持锁定,然而它的载波相位测量值实际上已经发生了失周现象,即周整模糊度在数值上会有某个整数周的跳变。这一章假定所考虑的所有卫星信号全被持续锁定,于是各个载波相位测量值的周整模糊度均相应地保持不变。

求解基线向量 b u r b_{ur} bur

在这里插入图片描述

r u r ( i ) = − b u r ⋅ I r ( i ) ( 7.18 ) r_{ur}^{(i)}=-\boldsymbol{b}_{ur}\cdot\boldsymbol{I}_{r}^{(i)}\quad(7.18) rur(i)=burIr(i)(7.18)
I r ( i ) \boldsymbol{I}_{r}^{(i)} Ir(i)是基准站对卫星 i i i的观测方向
[ ϕ u r ( 1 ) ϕ u r ( 2 ) ⋯ ϕ u r ( M ) ] = λ − 1 [ − ( I r ( 1 ) ) T 1 − ( I r ( 2 ) ) T 1 ⋯ ⋯ − ( I r ( M ) ) T 1 ] [ b u r c δ t u r ] + [ N u r ( 1 ) N u r ( 2 ) ⋯ N u r ( M ) ] ( 7.19 ) \begin{bmatrix}\phi_{ur}^{(1)}\\\phi_{ur}^{(2)}\\\cdots\\\phi_{ur}^{(M)}\end{bmatrix}=\lambda^{-1}\begin{bmatrix}-(\mathbf{I}_{r}^{(1)})^{\mathrm{T}}&1\\-(\mathbf{I}_{r}^{(2)})^{\mathrm{T}}&1\\\cdots&\cdots\\-(\mathbf{I}_{r}^{(M)})^{\mathrm{T}}&1\end{bmatrix}\begin{bmatrix}\boldsymbol{b}_{ur}\\c\boldsymbol{\delta}t_{ur}\end{bmatrix}+\begin{bmatrix}N_{ur}^{(1)}\\N_{ur}^{(2)}\\\cdots\\N_{ur}^{(M)}\end{bmatrix}\quad(7.19) ϕur(1)ϕur(2)ϕur(M) =λ1 (Ir(1))T(Ir(2))T(Ir(M))T111 [burcδtur]+ Nur(1)Nur(2)Nur(M) (7.19)

[ ϕ w , n + 1 ( 1 ) ϕ w , n + 1 ( 2 ) ⋯ ϕ w , n + 1 ( M ) ] − [ ϕ w , n ( 1 ) ϕ w , n ( 2 ) ⋯ ϕ w , n + 1 ( M ) ] = λ − 1 G n + 1 [ b u r , n + 1 c ∂ t u r , n + 1 ] − λ − 1 G n [ b u r , n c δ t u r , n ] ( 7.20 ) \begin{bmatrix}\phi_{w,n+1}^{(1)}\\\phi_{w,n+1}^{(2)}\\\cdots\\\phi_{w,n+1}^{(M)}\end{bmatrix}-\begin{bmatrix}\phi_{w,n}^{(1)}\\\phi_{w,n}^{(2)}\\\cdots\\\phi_{w,n+1}^{(M)}\end{bmatrix}=\lambda^{-1}\boldsymbol{G}_{n+1}\begin{bmatrix}b_{ur,n+1}\\c\boldsymbol{\partial}t_{ur,n+1}\end{bmatrix}-\lambda^{-1}\boldsymbol{G}_n\begin{bmatrix}\boldsymbol{b}_{ur,n}\\c\boldsymbol{\delta}t_{ur,n}\end{bmatrix}\quad(7.20) ϕw,n+1(1)ϕw,n+1(2)ϕw,n+1(M) ϕw,n(1)ϕw,n(2)ϕw,n+1(M) =λ1Gn+1[bur,n+1ctur,n+1]λ1Gn[bur,ncδtur,n](7.20)

[ ϕ u r , n + 1 ( 1 ) − ϕ u r , n ( 1 ) ϕ u r , n + 1 ( 2 ) − ϕ u r , n ( 2 ) ⋯ ϕ u r , n + 1 ( M ) − ϕ u r , n ( M ) ] = λ − 1 G n + 1 [ Δ b u r c ⋅ Δ δ t u r ] + λ − 1 ( G n + 1 − G n ) [ b u r , n c δ t u r , n ] ( 7.22 ) \begin{bmatrix}\phi_{ur,n+1}^{(1)}-\phi_{ur,n}^{(1)}\\\phi_{ur,n+1}^{(2)}-\phi_{ur,n}^{(2)}\\\cdots\\\phi_{ur,n+1}^{(M)}-\phi_{ur,n}^{(M)}\end{bmatrix}=\lambda^{-1}\mathbf{G}_{n+1}\begin{bmatrix}\Delta\boldsymbol{b}_{ur}\\c\cdot\Delta\boldsymbol{\delta}t_{ur}\end{bmatrix}+\lambda^{-1}(\boldsymbol{G}_{n+1}-\boldsymbol{G}_{n})\begin{bmatrix}\boldsymbol{b}_{ur,n}\\\boldsymbol{c}\delta t_{ur,n}\end{bmatrix}\quad\quad(7.22) ϕur,n+1(1)ϕur,n(1)ϕur,n+1(2)ϕur,n(2)ϕur,n+1(M)ϕur,n(M) =λ1Gn+1[ΔburcΔδtur]+λ1(Gn+1Gn)[bur,ncδtur,n](7.22)
我们从式(7.22)中可以看出以下几点

首先,因为相对定位值变化量(即 Δ b u r 和 Δ δ t u r \Delta b_{ur}和\Delta\delta t_{ur} ΔburΔδtur)前的系数矩阵为几何矩阵Gn+1,所以如同第5章利用伪距求解绝对定位值一样,利用单差载波相位测量值求解相对定位值变化量一般不成问题 ; 其次,因为Gn+1与Gn之差的第四列元素全为零,所以未知量 δ t u r , n \delta t_{ur,n} δtur,n实际上不再影响方程式(7.22),也就是说,它不能从该方程式中被求解出来; 最后,由于相对定位值(即bur,n)前的系数矩阵为两时刻之间的几何矩阵变化量的值为Gn+1 -Gn因而当卫星几何分布状况变化很小时,求解相对定位值一般会引入很大的误差。

双差

每个双差测量值涉及两个接收机在单个时刻对2颗卫星的测量值,对两颗卫星的单差进行差分,即接收机和星间各求一次差分。

🌼双差能彻底消除接收机钟差和卫星钟差

假设用户接收机 u u u和基站 r r r跟踪卫星 i i i和卫星 j j j

站间对i的单差相位测量值为:
ϕ u r ( i ) = λ − 1 r u r ( i ) + f δ t u r + N u r ( i ) + ε ϕ , u r ( i ) ( 7.17 ) \phi_{ur}^{(i)}=\lambda^{-1}r_{ur}^{(i)}+f\delta t_{ur}+N_{ur}^{(i)}+\varepsilon_{\phi,ur}^{(i)}\quad(7.17) ϕur(i)=λ1rur(i)+fδtur+Nur(i)+εϕ,ur(i)(7.17)
站间对j的单差相位测量值为:
ϕ u r ( j ) = λ − 1 r u r ( j ) + f δ t u r + N u r ( j ) + ε ϕ , u r ( j ) ( 7.24 ) \phi_{ur}^{(j)}=\lambda^{-1}r_{ur}^{(j)}+f\delta t_{ur}+N_{ur}^{(j)}+\varepsilon_{\phi,ur}^{(j)}\quad(7.24) ϕur(j)=λ1rur(j)+fδtur+Nur(j)+εϕ,ur(j)(7.24)
他们组成的双差的载波相位测量值 ϕ u r ( i j ) \phi_{ur}^{(ij)} ϕur(ij)定义为
ϕ u r ( i j ) = ϕ u r ( i ) − ϕ u r ( j ) ( 7.25 ) \phi_{ur}^{(ij)}=\phi_{ur}^{(i)}-\phi_{ur}^{(j)}(7.25) ϕur(ij)=ϕur(i)ϕur(j)(7.25)
将式(7.17)和式(7.24)代入上式,得双差测量值的观测方程式为
ϕ u r ( i j ) = λ − 1 r u r ( i j ) + N u r ( i j ) + ε ϕ , u r ( i j ) ( 7.26 ) \phi_{ur}^{(ij)}=\lambda^{-1}r_{ur}^{(ij)}+N_{ur}^{(ij)}+\varepsilon_{\phi,ur}^{(ij)}\quad(7.26) ϕur(ij)=λ1rur(ij)+Nur(ij)+εϕ,ur(ij)(7.26)
虽然由式(7.25)所定义的双差是通过先求站间差异、再求星间差异得到的,但是这与通过先求星
间差异、再求站间差异所得到的双差在数值上相等.

式(7.26)表明了双差能彻底消除接收机钟差和卫星钟差,然而它的代价是使双差测量值噪声 ε ϕ , u r ( i j ) \varepsilon_{\phi,ur}^{(ij)} εϕ,ur(ij)的均方差增加到原先单差测量噪声E均方差 ε ϕ , u r ( i ) \varepsilon_{\phi,ur}^{(i)} εϕ,ur(i)的√2倍,一般在1 cm左右,即大致为0.05个载波L1的波长。

求解基线向量 b u r b_{ur} bur

r u r ( i ) = − b u r ⋅ I r ( i ) ( 7.18 ) r u r ( j ) = − b u r ⋅ I r ( j ) ( 7.28 ) r u r ( i j ) = r u r ( i ) − r u r ( j ) ( 7.27 A ) r_{ur}^{(i)}=-\boldsymbol{b}_{ur}\cdot\boldsymbol{I}_{r}^{(i)}\quad(7.18) \\ r_{ur}^{(j)}=-\boldsymbol{b}_{ur}\cdot\boldsymbol{I}_{r}^{(j)}\quad(7.28)\\ r_{ur}^{(ij)}=r_{ur}^{(i)}-r_{ur}^{(j)}\quad(7.27A) rur(i)=burIr(i)(7.18)rur(j)=burIr(j)(7.28)rur(ij)=rur(i)rur(j)(7.27A)

得到
r u r ( i j ) = − b u r ⋅ I r ( i ) + b u r ⋅ I r ( j ) = − ( I r ( i ) − I r ( j ) ) ⋅ b u r ( 7.29 ) ϕ u r ( i j ) = − λ − 1 ( I r ( i ) − I r ( j ) ) ⋅ b u r + N u r ( i j ) + ε ϕ , u r ( i j ) ( 7.30 ) r_{ur}^{(ij)}=-\boldsymbol{b}_{ur}\cdot\boldsymbol{I}_{r}^{(i)}+\boldsymbol{b}_{ur}\cdot\boldsymbol{I}_{r}^{(j)}=-\left(\boldsymbol{I}_{r}^{(i)}-\boldsymbol{I}_{r}^{(j)}\right)\cdot\boldsymbol{b}_{ur}\quad\quad\quad\quad(7.29)\\ \phi_{ur}^{(ij)}=-\lambda^{-1}\left(\boldsymbol{I}_{r}^{(i)}-\boldsymbol{I}_{r}^{(j)}\right)\cdot\boldsymbol{b}_{ur}+N_{ur}^{(ij)}+\boldsymbol{\varepsilon}_{\phi,ur}^{(ij)}\quad\quad\quad\quad(7.30) rur(ij)=burIr(i)+burIr(j)=(Ir(i)Ir(j))bur(7.29)ϕur(ij)=λ1(Ir(i)Ir(j))bur+Nur(ij)+εϕ,ur(ij)(7.30)
由于用户和基准站接收机对两颗不同卫星的载波相位测量值(即对两颗不同卫星的单差测量值)才能线性组合成一个双差测量值,因而若两接收机同时对M颗卫星有测量值,则这M对载波相位测量值(即M个单差测量值)的两两之间总共能产生M(M-1)个双差测量值,但只有其中的M-1个双差值相互独立。也就是说,双差技术的另一个代价是牺牲一个观测方程式。假设这M-1个相互独双差值相互独立。也就是说,双差技术的另一个代价是牺牲一个观测方程式。
[ ϕ u r ( 21 ) ϕ u r ( 31 ) ⋯ ϕ u r ( M 1 ) ] = λ − 1 [ − ( I r ( 2 ) − I r ( 1 ) ) T − ( I r ( 3 ) − I r ( 1 ) ) T ⋯ − ( I r ( M ) − I r ( 1 ) ) T ] b u r + [ N u r ( 21 ) N u r ( 31 ) ⋯ N u r ( M 1 ) ] ( 7.31 ) \begin{bmatrix}\phi_{ur}^{(21)}\\\phi_{ur}^{(31)}\\\cdots\\\phi_{ur}^{(M1)}\end{bmatrix}=\lambda^{-1}\begin{bmatrix}-\left(I_r^{(2)}-I_r^{(1)}\right)^{\mathrm{T}}\\-\left(I_r^{(3)}-I_r^{(1)}\right)^{\mathrm{T}}\\\cdots\\-\left(I_r^{(M)}-I_r^{(1)}\right)^{\mathrm{T}}\end{bmatrix}\boldsymbol{b}_{ur}+\begin{bmatrix}N_{ur}^{(21)}\\N_{ur}^{(31)}\\\cdots\\N_{ur}^{(M1)}\end{bmatrix}\quad(7.31) ϕur(21)ϕur(31)ϕur(M1) =λ1 (Ir(2)Ir(1))T(Ir(3)Ir(1))T(Ir(M)Ir(1))T bur+ Nur(21)Nur(31)Nur(M1) (7.31)
其中,双差测量噪声ε被省略了。若接收机能确定上述矩阵方程式中的各个双差周整模糊度值 N u r ( i l ) N_{ur}^{(i\mathbf{l})} Nur(il),则基线向量bur就能从该方程式中求解出来,从而实现相对定位。

式(7.31)选择了以编号为1的卫星作为双差运算中的参考卫星,故它的单差值 ϕ u r ( l ) \phi_{ur}^{(\mathbf{l})} ϕur(l)进入了以上所有M-1个双差值叫 ϕ u r ( i l ) \phi_{ur}^{(i\mathbf{l})} ϕur(il)。不难理解,为了确保各个双差测量值的精确性,参考卫星的单差值应当尽可能地精确,而具有高仰角的卫星通常成为参考卫星的首选。

双差伪距

双差伪距的优点在于其不含周整模糊度,但其测量噪声的均方差远高于双差载波相位测量噪声的均方差。

在给出足够多个双差伪距测量值的条件下,接收机理论上可从上述矩阵方程式中求解出基线向量bur。类似于4.5.1节中的载波相位平滑伪距技术,双差载波相位可以用来平滑相应的双差伪距,从而降低双差伪距的测量噪声。

事实上,这种平滑技术也可用卡尔曼滤波来实现,即1️⃣首先利用双差载波相位测量值的变化量来预测下一时刻的双差伪距滤波值,2️⃣接着利用实际的双差伪距测量值来校正双差伪距滤波结果。

被平滑或滤波后的双差伪距测量值既有着较低的测量噪声,又保持着无周整模糊度的优点, 而我们经常将这些测量值代入式(7.34),并将所解得的基线向量bur作为对该基线向量的一个初始估计值。

三差

双差消除了单差中的接收机钟差误差,然而双差载波相位测量值 ϕ u r ( i j ) \phi_{ur}^{(ij)} ϕur(ij)仍存在一个并不是相对定位最终关心的双差周整模糊度

在这里插入图片描述

可以想象,当用户与基准站两端的接收机均持续锁定卫星信号时,这些未知的双差周整模糊度值会保持不变,故不同时刻的双差载波相位测量值之差可抵消掉双差周整模糊度。

正如图7.6 (c) 所示,每个三差测量值涉及两个接收机两个时刻两颗卫星的载波相位测量值,它对两个测量时刻的双差再进行差分,以最终消除周整模糊度这一未知参量。

假如我们将tn测量时刻的双差载波相位测量值 ϕ u r ( i j ) \phi_{ur}^{(ij)} ϕur(ij)记为 ϕ u r , n ( i j ) \phi_{ur,n}^{(ij)} ϕur,n(ij),那么该时刻的三差 Δ ϕ u r , n ( i j ) \Delta\phi_{ur,n}^{(ij)} Δϕur,n(ij)定义为tn与tn-1时刻的双差之差异,即
Δ ϕ u r , n ( i j ) = ϕ u r , n ( j j ) − ϕ u r , n − 1 ( j j ) ( 7.35 ) \Delta\phi_{ur,n}^{(ij)}=\phi_{ur,n}^{(jj)}-\phi_{ur,n-1}^{(jj)}\quad(7.35) Δϕur,n(ij)=ϕur,n(jj)ϕur,n1(jj)(7.35)
由(7.26)得到(7.36)
ϕ u r ( i j ) = λ − 1 r u r ( i j ) + N u r ( i j ) + ε ϕ , u r ( i j ) ( 7.26 ) Δ ϕ u r , n ( i j ) = λ − 1 Δ r u r , n ( i j ) + Δ ε ϕ , u r , n ( i j ) ( 7.36 ) \phi_{ur}^{(ij)}=\lambda^{-1}r_{ur}^{(ij)}+N_{ur}^{(ij)}+\varepsilon_{\phi,ur}^{(ij)}\quad(7.26) \\ \Delta\phi_{ur,n}^{(ij)}=\lambda^{-1}\Delta r_{ur,n}^{(ij)}+\Delta\varepsilon_{\phi,ur,n}^{(ij)}(7.36) ϕur(ij)=λ1rur(ij)+Nur(ij)+εϕ,ur(ij)(7.26)Δϕur,n(ij)=λ1Δrur,n(ij)+Δεϕ,ur,n(ij)(7.36)

求解基线向量 b u r b_{ur} bur

假定基线向量 b u r b_{ur} bur不随时间变化,那么将双差几何距离 r u r ( i j ) r_{ur}^{(ij)} rur(ij)与基线向量 b u r b_{ur} bur的关系式(7.29)代入式(7.36),得
r u r ( i j ) = − b u r ⋅ I r ( i ) + b u r ⋅ I r ( j ) = − ( I r ( i ) − I r ( j ) ) ⋅ b u r ( 7.29 ) Δ ϕ u r , n ( i j ) = − λ − 1 Δ ( I r , n ( i ) − I r , n ( j ) ) ⋅ b u r + Δ ε ϕ , u r , n ( i j ) ( 7.38 ) r_{ur}^{(ij)}=-b_{ur}\cdot I_{r}^{(i)}+b_{ur}\cdot I_{r}^{(j)}=-\left(I_{r}^{(i)}-I_{r}^{(j)}\right)\cdot b_{ur}\quad(7.29) \\ \Delta\phi_{ur,n}^{(ij)}=-\lambda^{-1}\Delta\left(\boldsymbol{I}_{r,n}^{(i)}-\boldsymbol{I}_{r,n}^{(j)}\right)\cdot\boldsymbol{b}_{ur}+\Delta\boldsymbol{\varepsilon}_{\phi,ur,n}^{(ij)}(7.38) rur(ij)=burIr(i)+burIr(j)=(Ir(i)Ir(j))bur(7.29)Δϕur,n(ij)=λ1Δ(Ir,n(i)Ir,n(j))bur+Δεϕ,ur,n(ij)(7.38)
考虑到用户与基准站接收机对M颗卫星的载波相位测量值能组成M-1个相互独立的双差,而每个双差量在tn,与tn-1两测量时刻的值又能组成一个三差,那么两接收机对M颗卫星连续两个时刻的载波相位测量值可以相应地组成M-1个三差。这M-1个如式(7.38)所示的三差载波相位观测方程式集中在一起,可组成一个如下的矩阵方程式:
[ Δ ϕ u r , n ( 21 ) Δ ϕ u r , n ( 31 ) ⋯ Δ ϕ u r , n ( M 1 ) ] = λ − 1 [ − Δ ( I r , n ( 2 ) − I r , n ( 1 ) ) T − Δ ( I r , n ( 3 ) − I r , n ( 1 ) ) T ⋯ − Δ ( I r , n ( M ) − I r , n ( 1 ) ) T ] b u r ( 7.36 ) \begin{bmatrix}\Delta\phi_{\boldsymbol{u}r,n}^{(21)}\\\Delta\phi_{\boldsymbol{u}r,n}^{(31)}\\\cdots\\\Delta\phi_{\boldsymbol{u}r,n}^{(\boldsymbol{M}1)}\end{bmatrix}=\lambda^{-1}\begin{bmatrix}-\Delta\left(\boldsymbol{I}_{r,n}^{(2)}-\boldsymbol{I}_{r,n}^{(1)}\right)^\mathrm{T}\\\\-\Delta\left(\boldsymbol{I}_{r,n}^{(3)}-\boldsymbol{I}_{r,n}^{(1)}\right)^\mathrm{T}\\\cdots\\-\Delta\left(\boldsymbol{I}_{r,n}^{(\boldsymbol{M})}-\boldsymbol{I}_{r,n}^{(1)}\right)^\mathrm{T}\end{bmatrix}\boldsymbol{b}_{\boldsymbol{u}r}\quad(7.36) Δϕur,n(21)Δϕur,n(31)Δϕur,n(M1) =λ1 Δ(Ir,n(2)Ir,n(1))TΔ(Ir,n(3)Ir,n(1))TΔ(Ir,n(M)Ir,n(1))T bur(7.36)
虽然三差可以用来计算基线向量 b u r b_{ur} bur而实现相对定位,但是由于上式等号右边系数矩阵所对应的精度因子(DOP)值一般较大,因而利用三差测量值获得的相对定位的精度不会高, 除非接收机等到卫星几何分布在前后两个测量时刻发生了一个显著的变化为止。

不过,将多个三差值集中在一起有利于接收机检测出哪些载波相位测量值发生了失周错误。

至此,载波相位测量值中的所有误差和周整模糊度经过三次差分后被全部消除,然而它也付出了相应的代价 ,包括差分测量噪声变强、相互独立的差分测量值数目变少以及差分观测方程式中的 DOP值变差等 若综合考虑 测量误差、噪声和精度因子这三方面的因素,则由高阶差分定位方程得到的定位结果精度未必一定高于由低阶差分定位方程得到的定位结果精度。最后我们想再一次指出,在这三种差分测量值中,双差载波相位是一种用来实现相对定位的关键测量值。

☘️ 结束!

注:本文为 谢钢—《GPS原理与接收机设计》篇的笔记~

🌈ok,完结~(●’◡’●) 看到这里 点个赞叭 (●’◡’●)

  • 25
    点赞
  • 34
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

~光~~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值