线性代数学习----关于齐次方程组和非齐次方程组的解(理解型)

线性代数学习----关于齐次方程组和非齐次方程组的解

🌈本次学习的视频是b站的俗说矩阵的关于方程组的解的笔记简要版,同时也加入了自己的理解在里面~
🐋欢迎大家交流讨论~ 同时本文适合学过线代但是不太理解的uu阅读~ 当然初学者也可以看看~可以有一个几何和代数的认识。
🌊当然 大家也可以看看b站火热的线性代数的本质婆婆町翻译(哈哈哈适合中国宝宝体质)的3b1b的视频讲的很好!

关于齐次方程组的求解

🌱什么是齐次方程组?

image-20231201105645774

直观理解:诸如这样的等式后面都是0的就是齐次方程组。

几何理解

🌴通俗一点说,对于二维平面~

从几何上直观理解,就是过原点的直线

那解齐次方程组的解就是去找到这些直线的交点,对应的交点的坐标就是我们要的解~

🤔想象一下,对于二维平面,几条过原点的直线,交点会有哪些情况?


🌺聪明,相交为一个点(也就是原点)(只有一个解,且为零解)和 重合(有无数个点 )(也就是有无数个解)

也就对应下面两种情况

image-20231201105601447

image-20231201105620427

代数解决

那么具体怎么体现在代数上(怎么解决呢?)

零解的情况

image-20231201110146165

🌈阶梯系数矩阵非0行数和未知数个数相等,齐次线性方程组只有零解。

对于这个情况,可以想象我们有三条三维空间的直线 。

他们都经过原点,互不相交,所以解只有一个。

无穷解(非零解)的情况

在这里插入图片描述

🌈将系数矩阵进行初等行变换变为阶梯矩阵,如果非0行数小于未知数个数,则齐次线性方程组存在非零解。

也就是说,他们不是满秩的,不是满秩也就是线性相关,线性相关就会存在至少一个解自由的情况,也就是会有一组基础解。

image-20231201202054622

image-20231201202147929

在这里插入图片描述

这个例子,从几何上来说,三元坐标系,就是有平面重合了,交点是一条直线。具体见下图。

image-20231201201950587

下面是上面的matlab代码

clear;clc;
[x, y, z] = meshgrid(-15:0.1:15);
f1 = @(x,y,z) x + 2*y + 3*z;
f2 = @(x,y,z) x + 6*y + 8*z;
f3=@(x,y,z) x + 10*y + 13*z;
fimplicit3(f1, 'm');
hold on;

% 绘制第二个函数
fimplicit3(f2, 'y');

% 绘制第三个函数
fimplicit3(f3,'b');

% 添加标题和标签
title('多个三元函数曲面绘制');
xlabel('X');
ylabel('Y');
zlabel('Z');

% 添加格网和色彩条
grid on;
colorbar;

对于这个情况,经过化简之后,其中一个方程消元被消元没了。其中一个全为0,也3条直线有1条和其他两条重合了,也就是有无穷多个解。

总结

1️⃣给定一个齐次的线性方程组A,首先明确未知数个数n。

2️⃣对这个方程的系数矩阵进行行变换,变成阶梯矩阵

3️⃣判断秩r和未知数个数n的的情况。

阶梯系数矩阵非0行数(秩r)和未知数个数(n)相等,齐次线性方程组只有零解。 r=n

将系数矩阵进行初等行变换变为阶梯矩阵,如果非0行数(秩r)小于未知数个数(n),则齐次线性方程组**存在非零解。**r<n

4️⃣如果r(A)<n,方程组存在非零解,此时找出主变量和自由变量,明确基础解系中向量的个数t =n -r(A),然后对自由变量正交赋值,自底向上地求出主变量的值,最终求出基础解系。

5️⃣将基础解系进行线性组合,得到的就是齐次线性方程组的通解。

🌿关于怎么具体求解方程组,还是大家建议看看原视频,讲的很清楚~

关于非齐次方程组的求解

🌳 非齐次方程组是什么样的?

image-20231201203022219

类似这样,后面带数字的

几何理解

同样的:

🌴通俗一点说,对于二维平面~

从几何上直观理解,就是未过原点的直线(在原点上下平移)

那解非齐次方程组的解就是去找到这些直线的交点,对应的交点的坐标就是我们要的解~

🤔想象一下,对于二维平面,几条直线,交点会有哪些情况?


答案是:一个交点 重合(无数个点) 平行(没有交点)

也就是下面这几种情况

image-20231201203240932

image-20231201203250136
在这里插入图片描述

和线性相关联系理解

求解线性方程组本身就是求解他们空间的向量相不相关的问题。

我们线性相关的定义是: a 1 , a 2 , ⋯   , a m \boldsymbol{a}_1,\boldsymbol{a}_2,\cdots,\boldsymbol{a}_m a1,a2,,am m m m 个向量。对于方程 λ 1 a 1 + λ 2 a 2 + ⋯ + λ m a m = 0 \lambda_1\boldsymbol{a}_1+\lambda_2\boldsymbol{a}_2+\cdots+\lambda_m\boldsymbol{a}_m=\mathbf{0} λ1a1+λ2a2++λmam=0 ,若其有非零解
( λ 1 , λ 2 , ⋯   , λ m ) ≠ 0 (\lambda_1,\lambda_2,\cdots,\lambda_m)\neq\mathbf{0} (λ1,λ2,,λm)=0 ,则称 a 1 , a 2 , ⋯   , a m \boldsymbol{a}_1,\boldsymbol{a}_2,\cdots,\boldsymbol{a}_m a1,a2,,am 线性相关;
若其只有唯一解 ( λ 1 , λ 2 , ⋯   , λ m ) = 0 (\lambda_1,\lambda_2,\cdots,\lambda_m)=0 (λ1,λ2,,λm)=0 ,则称 a 1 , a 2 , ⋯   , a m a_1,a_2,\cdots,a_m a1,a2,,am 线性无关。

🐬是不是看着很拗口,很抽象?

其实就是找有没有不全为0的λ,使得我上面的等式成立。如果有的话,就是线性相关,没有就是线性无关。

而线性无关就是满秩。

由此可见,0 向量和任意向量线性相关。

比如:
{ x 1 + 2 x 2 + 3 x 3 + x 4 = 3 x 1 − 4 x 2 − x 3 − x 4 = 1 2 x 1 + x 2 + 4 x 3 + x 4 = 5 x 1 − x 2 + x 3 + 0 x 4 = 2 \left.\left\{\begin{array}{ccc}x_1+2x_2+3x_3+x_4=3\\x_1-4x_2-x_3-x_4=1\\2x_1+x_2+4x_3+x_4=5\\x_1-x_2+x_3+0x_4=2\end{array}\right.\right. x1+2x2+3x3+x4=3x14x2x3x4=12x1+x2+4x3+x4=5x1x2+x3+0x4=2
可以看作
[ 1 1 2 1 ] x 1 + [ 2 4 1 − 1 ] x 2 + [ 3 − 1 4 1 ] x 3 + [ 1 − 1 1 0 ] x 4 = [ 3 1 5 2 ] b = [ 3 1 5 2 ] k 1 = [ 1 1 2 1 ] k 2 = [ 2 4 1 − 1 ] k 3 = [ 3 − 1 4 1 ] k 4 = [ 1 − 1 1 0 ] \begin{bmatrix}1\\1\\2\\1\end{bmatrix}x_1+\begin{bmatrix}2\\4\\1\\-1\end{bmatrix}x_2+\begin{bmatrix}3\\-1\\4\\1\end{bmatrix}x_3+\begin{bmatrix}1\\-1\\1\\0\end{bmatrix}x_4=\begin{bmatrix}3\\1\\5\\2\end{bmatrix} \\ b=\begin{bmatrix}3\\1\\5\\2\end{bmatrix} k_1=\begin{bmatrix}1\\1\\2\\1\end{bmatrix} k_2=\begin{bmatrix}2\\4\\1\\-1\end{bmatrix} k_3=\begin{bmatrix}3\\-1\\4\\1\end{bmatrix} k_4=\begin{bmatrix}1\\-1\\1\\0\end{bmatrix} 1121 x1+ 2411 x2+ 3141 x3+ 1110 x4= 3152 b= 3152 k1= 1121 k2= 2411 k3= 3141 k4= 1110
⭐️也就是说:判断一组方程有没有解,就是判断有没有合适的x1 ,x2 ,x3 ,x4 (不全为0的数)使得k1 ,k2 ,k3 ,k4 和b向量线性相关。

对于求解方程式来说,如果系数矩阵满秩,就是线性无关。如果不满秩——线性相关。

如果想不明白可以想:

线性相关(不满秩)本身就可以有很多种表示

比如在一条直线上的两个向量,如果要表示这条直线的话是不是有很多种表达方式?也就是有很多个解比如(1,0) 和(0.5,0) 要表示(2,0) 有2*(1,0) + 0 *(0.5,0)=(2,0)或者 1 *(1,0)+2 *(0.5,0)=(2,0)

线性无关(满秩)

比如不再同一直线上的两个向量,需要表示另一个向量,比如(1,0) (0,1)要表示(1,1) 是不是有且仅有一种表示方法 即 1*(1,0)+1 *(0,1)=(1,1)

⭐️具体方法为

原系数矩阵(记作A)和新增加的b矩阵

🌱有没有解:看A和b是否线性相关 看A和b的秩的情况

​ 线性相关 有解;线性无关 无解

​ 如果增加b之后,A的秩没有增加,那么他们是 线性相关的(维度没有改变);反之(比如升了 一维,三维无法用二维表示)线性无关

☘️有多少个解(建立在A和b线性相关的基础上,也就是增广矩阵的秩和系数矩阵的秩相等):

​ 看A是否满秩 满秩 只有一种表达方式 唯一解

​ 不满秩 n种表达方式 无穷解

⭐️⭐️有没有解看的是加了新的向量,秩变不变化,变化则新的向量原有向量无法线性表示它,则线性无关。倘若新变量非全零,则无解。几个解 有解的情况下再看系数矩阵,倘若原本是满秩,则仅有一解。若不满秩,则有无穷解,且基础解系数量=n-r。

代数解决

唯一解

首先普及一个概念,增广矩阵。

⛵️ 具体看下图,很形象具体了~

image-20231201203416798

☘️下面看看唯一解的代数解:​

image-20231201203336908

怎么理解?

首先增广矩阵和阶梯系数矩阵的非零行数相等(增加b(另一个新的向量),秩不增加,所以右边的向量和左边线性相关),且等于未知数个数(满秩)

系数矩阵的秩,记作rA ,如果增广矩阵rb和rA相等的, 意味着 满秩 系数矩阵(左侧系数矩阵) 均 线性无关,但是增加的右边的系数(b向量),秩不增加,所以右边的向量和左边线性相关,所以有唯一解。

增加b 秩不增加 👉 可以线性表示(有解)

满秩 👉 线性无关(一种表达方式)

故:可以线性唯一表示

无穷解

在这里插入图片描述

首先增广矩阵和阶梯系数矩阵的非零行数相等(也就是增加b之后我的秩没有改变),且不等于未知数个数(不是满秩)。

增加b 秩不增加 👉 可以线性表示(有解)

不是满秩 👉 线性相关 (很多种表达方式)

故:有无穷个解

无解

在这里插入图片描述

首先可以看看系数矩阵的秩,记作rA ,如果增广矩阵rb比rA还大的话,意味着,加上b之后,升了一个维度。(可以想象一下,原本是一个二维的平面,加上了一个b之后,升了一维)那么无论如何他也无法表示更高的维度。所以此时方程组必然是没有解的。

增加b 秩增加 👉 可以无法线性表示(无解)

故:无解

总结

image-20231201212813039

☘️对于齐次方程组:

存在 零解 和无穷解的情况

通过判断矩阵的秩可以得到

1️⃣rA<n 无穷解

(可以理解为 线性相关 很多种可能 直线重合)

2️⃣rA=n 零解

(可以理解为 满秩 线性无关 只有一种可能 只与原点相交)

🌺:对于非齐次方程组:

存在 唯一解 无穷解 和 无解的情况

通过增广矩阵和系数矩阵判断有没有解

通过系数矩阵判断解有多少个

1️⃣有无解

rA<rb 无解

(可以理解为 升了一个维度二维的平面无法表示三维空间 两个线性无关的向量空间(秩不一样)无法相互表示 )

rA=rb 有解

(可以理解为 两个线性相关的向量空间(秩一样)可以相互表示 平面相交有交点)

2️⃣几个解

rA满秩

(可以理解为 系数矩阵线性无关 ,所以只有一种表示方法)

rA不满秩

(可以理解为 线性相关 有很多种表示方法 也就是内部能够有各种各样的表示方法 )

🚀再放一次

如果想不明白可以想:

线性相关(不满秩)本身就可以有很多种表示

比如在一条直线上的两个向量,如果要表示这条直线的话是不是有很多种表达方式?也就是有很多个解比如(1,0) 和(0.5,0) 要表示(2,0) 有2*(1,0) + 0 *(0.5,0)=(2,0)或者 1 *(1,0)+2 *(0.5,0)=(2,0)

线性无关(满秩)

比如不再同一直线上的两个向量,需要表示另一个向量,比如(1,0) (0,1)要表示(1,1) 是不是有且仅有一种表示方法 即 1*(1,0)+1 *(0,1)=(1,1)

🌈ok,完结~(●’◡’●) 看到这里 点个赞叭 (●’◡’●)

  • 13
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

~光~~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值