矩阵
矩阵加法:
相同位置相加。
矩阵乘法:
满足分配率、结合律,不满足交换律(矩阵与逆矩阵之间除外) 。
矩阵转置:
记矩阵为 \(A\) ,则 \(A\) 的转置记为 \(A^T\) 。
性质:
-
\[{(A^T)}^T=A \]
-
\[{(A+B)}^T=A^T+B^T \]
-
\[{(k\times A)}^T=k\times A^T \]
-
\[{(AB)}^T=A^TB^T \]
矩阵求逆:
\[\begin{bmatrix}2&-1&0&1&0&0\\-1&2&-1&0&1&0\\0&-1&2&0&0&1\end{bmatrix} \]
对左半边的矩阵做高斯消元,同时更新右半边的部分,(交换时也一起交换,但最终不用再换回来了)。而做完之后的右半边部分就是求得的逆矩阵。
矩阵快速幂:
-
对于不含常数项的递推式:(比较正常的矩阵快速幂)
-
对于含有常数项的递推式:加上一维,在转移矩阵中不更改。
-
对于含有关于 \(n^1\) 的递推式:加上两维,每次后一位给前一位加一。
-
对于含有关于 \(n^k\) 的递推式:加上