线性代数(矩阵、高斯、线性基……)

这篇博客深入探讨了线性代数中的矩阵运算,包括矩阵加法、乘法、转置和求逆,以及如何使用高斯消元法。此外,还详细介绍了线性基的概念及其在处理异或问题中的高效应用,如查询元素可否异或、异或最大值和最小值等。线性基的变式,如O(logn)求区间异或最大值,展示了其在解决复杂问题中的强大能力。
摘要由CSDN通过智能技术生成

矩阵

矩阵加法:

相同位置相加。

矩阵乘法:

满足分配率、结合律,不满足交换律(矩阵与逆矩阵之间除外)

矩阵转置:

记矩阵为 \(A\) ,则 \(A\) 的转置记为 \(A^T\)

性质:

  • \[{(A^T)}^T=A \]
  • \[{(A+B)}^T=A^T+B^T \]
  • \[{(k\times A)}^T=k\times A^T \]
  • \[{(AB)}^T=A^TB^T \]

矩阵求逆:

P4783 【模板】矩阵求逆

\[\begin{bmatrix}2&-1&0&1&0&0\\-1&2&-1&0&1&0\\0&-1&2&0&0&1\end{bmatrix} \]

对左半边的矩阵做高斯消元,同时更新右半边的部分,(交换时也一起交换,但最终不用再换回来了)。而做完之后的右半边部分就是求得的逆矩阵。

矩阵快速幂:

  • 对于不含常数项的递推式:(比较正常的矩阵快速幂)

  • 对于含有常数项的递推式:加上一维,在转移矩阵中不更改。

  • 对于含有关于 \(n^1\) 的递推式:加上两维,每次后一位给前一位加一。

  • 对于含有关于 \(n^k\) 的递推式:加上

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值