线性代数(矩阵、高斯、线性基……)

这篇博客深入探讨了线性代数中的矩阵运算,包括矩阵加法、乘法、转置和求逆,以及如何使用高斯消元法。此外,还详细介绍了线性基的概念及其在处理异或问题中的高效应用,如查询元素可否异或、异或最大值和最小值等。线性基的变式,如O(logn)求区间异或最大值,展示了其在解决复杂问题中的强大能力。
摘要由CSDN通过智能技术生成

矩阵

矩阵加法:

相同位置相加。

矩阵乘法:

满足分配率、结合律,不满足交换律(矩阵与逆矩阵之间除外)

矩阵转置:

记矩阵为 \(A\) ,则 \(A\) 的转置记为 \(A^T\)

性质:

  • \[{(A^T)}^T=A \]
  • \[{(A+B)}^T=A^T+B^T \]
  • \[{(k\times A)}^T=k\times A^T \]
  • \[{(AB)}^T=A^TB^T \]

矩阵求逆:

P4783 【模板】矩阵求逆

\[\begin{bmatrix}2&-1&0&1&0&0\\-1&2&-1&0&1&0\\0&-1&2&0&0&1\end{bmatrix} \]

对左半边的矩阵做高斯消元,同时更新右半边的部分,(交换时也一起交换,但最终不用再换回来了)。而做完之后的右半边部分就是求得的逆矩阵。

矩阵快速幂:

  • 对于不含常数项的递推式:(比较正常的矩阵快速幂)

  • 对于含有常数项的递推式:加上一维,在转移矩阵中不更改。

  • 对于含有关于 \(n^1\) 的递推式:加上两维,每次后一位给前一位加一。

  • 对于含有关于 \(n^k\) 的递推式:加上 \(k+1\) 维,例:

\[f[n]=2\times f[n-1]+n^k \]
\[\Downarrow \]
\[\begin{bmatrix}s[n]&n^k&n^{k-1}&\cdots&n^0\end{bmatrix}\times\begin{bmatrix}2&0&0&0&\cdots&0\\C_k^0&C_k^0&0&0&\cdots&0\\C_k^1&C_k^1&C_{k-1}^0&0&\cdots&0\\C_k^2&C_k^2&C_{k-1}^1&C_{k-2}^0&\cdots&0\\\vdots&\vdots&\vdots&\vdots&\ddots&\vdots\\C_k^k&C_k^k&C_{k-1}^{k-1}&C_{k-2}^{k-2}&\cdots&C_0^0\end{bmatrix}=\begin{bmatrix}s[n+1]&{(n+1)}^k&{(n+1)}^{k-1}&\cdots&{(n+1)}^0\end{bmatrix} \]

注意:!!

由于转移矩阵与答案举证的大小不同,应该在 struct 的矩阵中记录这个矩阵的大小,防止将 \(O(n^2)\) 变为 \(O(n^3)\) !!!

高斯消元

复杂度(朴素): \(O(n^3)\)

主要代码:

scanf("%d",&n);
for(int i=1;i<=n;i++) for(int j=1;j<=n+1;j++) scanf("%lf",&a[i][j]);
for(int i=1,Max=1;i<=n;Max=++i)
{
	 for(int s=i+1;s<=n;s++) if(fabs(a[s][i])>fabs(a[Max][i])) Max=s; // 找出绝对值最大的 
	 for(int j=1;j<=n+1;j++) swap(a[i][j],a[Max][j]);
	 if(a[i][i]<10e-8 && a[i][i]>-10e-8) { p=false; break; } // 记得 double 的精度问题 
	 for(int s=1;s<=n;s++) if(s!=i) // 这样省去了第二步处理的麻烦 
	 {
	 	 double tmp=0-(a[s][i]/a[i][i]);
	 	 a[s][i]=0;
	 	 for(int j=i+1;j<=n+1;j++) a[s][j]+=tmp*a[i][j];
	 }
}
if(p) for(int i=1;i<=n;i++) printf("%.2lf\n",a[i][n+1]/a[i][i]);
else printf("No Solution\n");

线性基

线性基为一个数集构造出来的新数集,满足以下性质:

  • 线性基的元素能相互异或得到原集合的元素的所有相互异或得到的值

  • 线性基是满足性质 \(1\)最小的集合

  • 线性基没有异或和为 \(0\) 的子集。

  • 线性基中不同的异或组合异或出的数都是不一样的。

  • 线性基中每个元素的二进制最高位互不相同

用处:

  • 快速查询一个数是否可以被一堆数异或出来

  • 快速查询一堆数可以异或出来的最大 \(/\) 最小值

  • 快速查询一堆数可以异或出来的第 \(k\) 大值

处理线性基:

void Insert(ll x)
{
	 for(int i=62;i>=0;i--)
	 {
	 	 if(!(x & (1ll<<(ll)i))) continue; // 防止对高位影响 
	 	 if(!p[i]) { p[i]=x; break; }
	 	 x^=p[i]; // 更新 [0,i-1] 位的更优答案 
	 }
	 if(!x) zero=1ll; // 特判 0 
}

查询一个元素是否可以被异或出来:

bool ask(ll x)
{
	 for(int i=62;i>=0;i--) if(x&(1ll<<(ll)i)) x^=p[i];
	 return x==0;
}

查询异或最大值:

ll query_max()
{
	 ll ret=0;
	 for(int i=62;i>=0;i--) if((ans^p[i])>ans) ans^=p[i];
	 return ans;
}

查询异或最小值:

ll query_min()
{
	 for(int i=0;i<=62;i++) if(p[i]) return p[i];
	 return 0;
}

查询异或第 \(k\) 小:

void rebuild()
{
	 // 重建 d 数组,求出哪些位可以被异或为 1
	 // d[i] 只有第 i 个二进制位为 1 
	 for(int i=62;i>=1;i--) // 从高到低防止后效性 
	 	 for(int j=i-1;j>=0;j--)
	 	 	 if(p[i] & (1ll<<(ll)j)) p[i]^=p[j];
	 for(int i=0;i<=62;i++) if(p[i]) d[cnt++]=p[i];
}
ll kth(ll k)
{
	 if(!k) return 0ll; // 特判 0 
	 if(k>=(1ll<<(ll)cnt)) return -1ll; // k 大于可以表示出的数的个数 
	 ll ret=0;
	 for(int i=62;i>=0;i--) if(k & (1ll<<(ll)i)) ret^=d[i];
	 return ret;
}

变式:

O(logn) 求区间异或最大值:

P3292 [SCOI2016]幸运数字

题意:给定一棵树,求 \(x\)\(y\) 路径的异或最大值。

\(p[x][]\) 表示点 \(x\) 到根之间所有点的线性基,同时维护 \(pos[x][]\) 表示这一线性基由哪一个点转移而来。

\(\text{Dfs}\) 加入一个新的点时,贪心将贡献相同或更高,且深度更大的点代替原来线性基中的值。

这样查询的时候就能在 \(O(\log_{2} n)\) 复杂度内求出在点 \(x\)\(Lca\) 路径中的点的最大异或和(更深的点已经加入线性基)。

完整代码

CF1100F Ivan and Burgers

题意:求出序列中 \(l\)\(r\) 的区间最大异或和。

和上一题差不多,将维护更深的点转化为维护更靠后的点即可。

完整代码

线性基还可以推广至非二进制的情况。

P3265 [JLOI2015]装备购买

这里需要维护一个 \(k\) 进制的线性基

主要代码:

int p[Maxn]; // 由于浮点数存储不方便,这里 p 记录的是值的下标 
struct Data
{
	 ld val[Maxk];
	 int Cost;
}a[Maxn];
void Insert(Data k) // 这里传入的也是下标 
{
	 for(int i=1;i<=m;i++)
	 {
	 	 if(fabs(a[k].val[i])<10e-8) continue;
	 	 if(!p[i]) { p[i]=k,cnt+=1,sum+=a[k].Cost; break; }
		 ld tmp=a[k].val[i]/a[p[i]].val[i];
		 for(int j=i;j<=m;j++) a[k].val[j]-=a[p[i]].val[j]*tmp;
	 }
}
较复杂的情况

P4151 [WC2011]最大XOR和路径

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值