引言:卡尔曼滤波器适用于线性高斯系统,若为非线性系统,可以使用扩展卡尔曼滤波器。
一、状态估算器
如下图,如果我们需要知道火箭发射时尾部内部的实际温度,这个温度与火箭的燃料输入
有关。但是由于里面温度过高,我们无法直接去用温度传感器去测量,那我们可以在外部用一个温度传感器去测量外部温度
,利用此测量值来得到内部温度
。

同时,我们也可以推导数学方程,利用输入燃料与外部温度的关系的数学表达式得到一个外部温度, 也可以利用此温度得到一个内部温度
。但是,不论是
和
都只是一个实际的近似值,这些会受到各种不确定因素的影响。
如果有一个完美的系统,使测量值和估算值
能够互相匹配,那么计算的内部温度也会与真实的内部温度吻合,但是,事实上这样是不行的。这时就需要使用状态估算器来估算内部状态。
我们的目标是使估计的外部温度与测量的外部温度温度吻合,如果这两者相等,那么估算的内部温度也能收敛到真实的内部温度,所以我们要做的是尽量减少估算

卡尔曼滤波器是一种用于线性高斯系统的状态估算器,通过结合系统模型与测量值,提供最优状态估计。在非线性系统中,可采用扩展卡尔曼滤波器。文章介绍了卡尔曼滤波器的基本概念,包括状态估算器、最优状态估计及其算法和方程,阐述了如何通过误差调整和卡尔曼增益来不断优化状态估计,以达到与真实值的最小误差。
最低0.47元/天 解锁文章
1220

被折叠的 条评论
为什么被折叠?



