卡尔曼(kalman)滤波器原理

卡尔曼滤波器是一种用于线性高斯系统的状态估算器,通过结合系统模型与测量值,提供最优状态估计。在非线性系统中,可采用扩展卡尔曼滤波器。文章介绍了卡尔曼滤波器的基本概念,包括状态估算器、最优状态估计及其算法和方程,阐述了如何通过误差调整和卡尔曼增益来不断优化状态估计,以达到与真实值的最小误差。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引言:卡尔曼滤波器适用于线性高斯系统,若为非线性系统,可以使用扩展卡尔曼滤波器。

一、状态估算器

如下图,如果我们需要知道火箭发射时尾部内部的实际温度T_{in},这个温度与火箭的燃料输入W_{fuel}有关。但是由于里面温度过高,我们无法直接去用温度传感器去测量,那我们可以在外部用一个温度传感器去测量外部温度T_{ext},利用此测量值来得到内部温度T_{in}

同时,我们也可以推导数学方程,利用输入燃料与外部温度的关系的数学表达式得到一个外部温度\widehat{T}_{ext}, 也可以利用此温度得到一个内部温度\widehat{T}_{in}。但是,不论是T_{in}\widehat{T}_{in}都只是一个实际的近似值,这些会受到各种不确定因素的影响。

如果有一个完美的系统,使测量值T_{ext}和估算值\widehat{T}_{ext}能够互相匹配,那么计算的内部温度也会与真实的内部温度吻合,但是,事实上这样是不行的。这时就需要使用状态估算器来估算内部状态。

我们的目标是使估计的外部温度与测量的外部温度温度吻合,如果这两者相等,那么估算的内部温度也能收敛到真实的内部温度,所以我们要做的是尽量减少估算

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值