卷积神经网络CNN

卷积神经网络(CNN)是深度学习的关键算法,它具有表征学习能力,适用于图像识别等领域。本文详细介绍了CNN的基本内容,包括神经元、神经网络结构、卷积、池化、Dropout和全连接层。卷积操作通过共享权重和偏置来提取特征,感受野和卷积核大小影响特征提取的范围和复杂度。此外,文章还讨论了深度可分离卷积、分组卷积、膨胀卷积等优化技术,以及池化的作用和Dropout在防止过拟合中的应用。
摘要由CSDN通过智能技术生成

卷积神经网络(Convolutional Neural Network,CNN)

神经网络的基本内容

  • 神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应
  • 卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习(deep learning)的代表算法之一。卷积神经网络具有表征学习(representation learning)能力,能够按其阶层结构对输入信息进行平移不变分类(shift-invariant classification),因此也被称为“平移不变人工神经网络(Shift-Invariant Artificial Neural Networks, SIANN) ————摘自百度百科

神经网络

神经元

  • 神经网络是由大量的神经元互相连接而成
  • 权重(weight):每两个神经元之间的连接的加权值
  • 权重和激活函数会影响神经网络的输出结果
  • 神经元的结构:
    1. 线性函数
    2. 非线性的激活函数
      • 常见的函数:Sigmoid、Tanh、ReLU等。(其中前两者多用于全连接层,ReLU函数多见于卷积层(隐藏层))
      • 作用:改变数据的线性关系,并且将数据映射在某个范围内,防止数据过大溢出)
      • 是神经网络可以逼近任意函数的关键。

神经网络结构

  • 输入层(Input Layer):
    该层可以处理多维数据,一般来说,一维卷积神经网络的输入层接收一维或二维数组,其中一维数组通常为时间或频谱的采样;二维数组可能包含多个通道;二维卷积神经网络的输入层接收二维或三维数组…
  • 输出层(Output Layer):
    在图像分类问题中,输出层使用逻辑函数或归一化指数函数(softmax function)输出分类标签;在物体识别(object detection)问题中,输出层可设计为输出物体的中心坐标、大小和分类;在图像语义分割中,输出层直接输出每个像素的分类结果 。
  • 隐藏层(Hidden Layer):
    在输入层与输出层之间夹着的层,且层和层之间是全连接的结构,同一层的神经元之间没有连接。

神经网络结构


感受野(Receptive Field)

  1. 概念:某个神经元能在输入层(Input Layer)看到的输入图像的区域,即特征图上的某个点能看到的输入图像的区域
  2. 感受野的值越大,所能接触到的原始图像的范围就越大,也意味着可能包含了更为全局、语义层次更高的特征;反之,感受野的值越小,所能接触到的原始图像的范围也就越小,也意味着可能包含更多的局部信息和细节特征。
  3. 计算:
    • 卷积层和池化层都会影响其大小
    • 激活函数、当前层的步长以及填补不会影响其大小
    • RF(i+1)=RF(i)+(f-1)*S(i)
      特别标注:
      • RF(i+1)表示当前所在层的感受野的大小
      • f表示卷积核的大小
      • S(i)表示除本层外,之前所层的步长的乘积

卷积(Convolution)

  1. 作用:使每个神经元局部连接上一个神经元并且共享权值
  2. 卷积核(共享权重),偏置函数(共享偏置)
卷积核(Kernel)
  1. 概念:相当于filter过滤器,指定卷积核大小需要小于输入图像的尺寸;卷积核越大,输入特征越复杂。
  2. 不同的卷积核大小,不同的填充大小以及不同的步长都会影响输出结果的大小。
    对于其计算:
    • (单通道的情况下)
      设:输入大小 = (n1, n2),卷积核大小 = (f1, f2),填充为P,步长为S,输出图像大小 = (a2, b2),则有
      a2 = (n1 + 2P - f1) / S + 1;
      b2 = (n2 + 2
      P - f2) / S + 1;
    • 在多通道的情况下,只需保证卷积核的通道数与输入数据的通道数保持一致即可,其余均同上。
  3. 卷积核的数目=输出数据的通道数
  4. 通道的输出数据应与对应的偏置函数(bias)相加。
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值