SpikingJelly笔记之IF&LIF神经元

本文详细介绍了SpikingJelly中的脉冲神经元(IF)和漏电整合发放(LIF)神经元模型,包括它们的数学模型、仿真过程以及主要区别,如IF的内存效应和LIF的漏电流机制。同时,文章展示了如何通过SpikingJelly进行神经元状态的监测和可视化。
摘要由CSDN通过智能技术生成


前言

记录整合发放(integrate-and-fire, IF)神经元与漏电整合发放(leaky integrate-and-fire, LIF)神经元模型,以及在SpikingJelly中的实现方法。


一、脉冲神经元

1、脉冲神经元:只输出脉冲(1/0)的神经元

spikingjelly.activation_based.neuron

2、阈下神经动态方程:神经元根据输入及自身状态更新膜电位

微分方程: d V ( t ) d t = f ( V ( t ) , X ( t ) ) \frac{dV(t)}{dt}=f(V(t),X(t)) dtdV(t)=f(V(t),X(t))

差分近似: V [ t ] = f ( V [ t − 1 ] , X [ t ] ) V[t]=f(V[t-1],X[t]) V[t]=f(V[t1],X[t])

3、计算步骤

X:输入
S:输出(0/1)
H:充电后、放电前的膜电位
V:放电后的膜电位

4、放电方程

def neuronal_fire(self):
        self.spike = self.surrogate_function(self.v - self.v_threshold)

surrogate_function:前向传播时为阶跃函数,膜电位超过阈值时输出为1

Θ ( x ) = { 1 , x ≥ 0 0 , x < 0 \Theta(x) = \left\{\begin{matrix} 1,\quad x\ge 0\\ 0,\quad x<0\\ \end{matrix}\right. Θ(x)={1,x00,x<0

5、重置方程

def neuronal_reset(self):
        if self.v_reset is None:
                self.v = self.v - self.spike * self.v_threshold
        else:
                self.v = (1. - self.spike) * self.v + self.spike * self.v_reset

膜电位达到阈值时神经元发放脉冲,膜电位恢复至静息值
v = { v − v t h r e s h o l d , v r e s e t = N o n e v r e s e t , o t h e r w i s e v = \left\{\begin{matrix} \begin{alignat*}{2} v-v_{threshold},&\quad v_{reset}=None\\ v_{reset},&\quad otherwise \end{alignat*} \end{matrix}\right. v={vvthreshold,vreset,vreset=Noneotherwise

二、IF神经元

1、神经元模型

(1)整合发放(integrate-and-fire)神经元:neuron.IFNode

理想积分器,无输入时膜电位保持恒定

(2)模型方程: I ( t ) = C d V ( t ) d t I(t)=C\frac{dV(t)}{dt} I(t)=CdtdV(t)

I(t):输入电流
V(t):膜电位
C:膜电容

(3)阈下神经动力学方程: H [ t ] = V [ t − 1 ] + X [ t ] H[t]=V[t-1]+X[t] H[t]=V[t1]+X[t]

(4)充电方程

def neuronal_charge(self, x: torch.Tensor):
        self.v = self.v + x

(5)构建IF神经元:layer = neuron.IFNode()

构造参数:
①v_threshold=1.0:阈值电压
②v_reset=0.0:重置电压
③surrogate_function=surrogate.Sigmoid():反向传播梯度替代函数
④step_mode=‘s’:步进模式,单步’s’,多步’m’
⑤store_v_seq=False:是否保存所有时间步的膜电位self.v

2、神经元仿真

(1)构建输入与神经元层,前50步输入为1,后50步输入为0

import torch
from torch import nn
from spikingjelly.activation_based import neuron, monitor, functional
from spikingjelly import visualizing
####################构建输入####################
T = 100 # 时间步数
N = 1 # 样本数目
D = 1 # 输入维度/神经元数目
x_seq1 = torch.ones(50, N, D)
x_seq2 = torch.zeros(50, N, D)
x_seq = torch.cat((x_seq1,x_seq2), 0)
# 构建一层IF神经元
net = nn.Sequential(neuron.IFNode(v_threshold=9.0,
                                  v_reset=0.0,
                                  step_mode='s',
                                  store_v_seq=False))
print(net)

神经元数量N由输入维度(T,N)确定
使用脉冲神经元代替神经网络的激活函数

(2)根据输入按时间步更新神经元膜电位与输出
单步模式(默认):逐步传播,深度优先遍历,内存占用小,适用于ANN2SNN
需要手动for循环按时间步计算

####################记录神经元状态####################
v_list = [] # 膜电位
s_list = [] # 神经元输出
####################单步模式:逐步传播####################
with torch.no_grad(): # 计算时关闭自动求导
    for i in range(T):
        y = net(x_seq[i])
        v_list.append(net[0].v)
        s_list.append(y)
functional.reset_net(net) # 重置神经元状态
####################可视化膜电位与输出####################
v_list = torch.cat(v_list).flatten()
s_list = torch.cat(s_list).flatten()
visualizing.plot_one_neuron_v_s(v_list.numpy(),
                                s_list.numpy(),
                                v_threshold=net[0].v_threshold,
                                v_reset=net[0].v_reset,
                                figsize=(12, 8),
                                dpi=100)

脉冲神经元是有状态的(self.v)
输入一批样本后需要进行复位:functional.reset_net(net)

(3)网络结构

Sequential(
  (0): IFNode(
    v_threshold=9.0, v_reset=0.0, detach_reset=False, step_mode=s, backend=torch
    (surrogate_function): Sigmoid(alpha=4.0, spiking=True)
  )
)

4、各时间步神经元的膜电位与输出

三、LIF神经元

1、神经元模型

(1)漏电整合发放(leaky integrate-and-fire)神经元:neuron.LIFNode

引入漏电项,无输入时膜电位恢复至静息电位,模拟离子扩散

(2)模型方程:
I ( t ) − g ( V ( t ) − E ) = C d V ( t ) d t I(t)-g(V(t)-E)=C\frac{dV(t)}{dt} I(t)g(V(t)E)=CdtdV(t)

I(t):输入电流
V(t):膜电位
C:膜电容
g:泄漏电导
E:静息电位

(3)阈下神经动力学方程:

H [ t ] = { V [ t − 1 ] + X [ t ] − 1 τ ( V [ t − 1 ] − V r e s e t ) , d e c a y _ i n p u t = F a l s e V [ t − 1 ] + 1 τ ( X [ t ] − ( V [ t − 1 ] − V r e s e t ) ) , d e c a y _ i n p u t = T r u e H[t] = \left\{\begin{matrix} \begin{alignat*}{2} V[t-1]+X[t]-\frac{1}{\tau}(V[t-1]-V_{reset}),&\quad decay\_input=False\\ V[t-1]+\frac{1}{\tau}(X[t]-(V[t-1]-V_{reset})),&\quad decay\_input=True \end{alignat*} \end{matrix}\right. H[t]= V[t1]+X[t]τ1(V[t1]Vreset),V[t1]+τ1(X[t](V[t1]Vreset)),decay_input=Falsedecay_input=True

decay_input为False时,膜电位V的衰减由 1 τ ( V − V r e s e t ) \frac{1}{\tau}(V-V_{reset}) τ1(VVreset)控制
decay_input为True时,输入X[t]参与衰减,乘以系数 1 τ \frac{1}{\tau} τ1

(4)充电方程

def neuronal_charge(self, x: torch.Tensor):
    if self.decay_input:
        if self.v_reset is None or self.v_reset == 0.:
            self.v = self.v + (x - self.v) / self.tau
        else:
            self.v = self.v + (x - (self.v - self.v_reset) / self.tau
    else:
        if self.v_reset is None or self.v_reset == 0.:
            self.v = self.v + x - self.v / self.tau
        else:
            self.v = self.v + x - (self.v - self.v_reset) / self.tau

(5)构建LIF神经元:layer = neuron.LIFNode()

构造参数:
①tau=2.0:膜电位时间常数
②decay_input=True:输入是否参与衰减
③v_threshold=1.0:阈值电压
④v_reset=0.0:重置电压
⑤surrogate_function=surrogate.Sigmoid():梯度替代函数
⑥step_mode=‘s’:步进模式
⑦store_v_seq=False:是否保存所有时间步的膜电位self.v

2、神经元仿真

(1)构建输入与神经元层,前50步输入为1,后50步输入为0

####################构建输入####################
T = 100 # 时间步数
N = 1 # 样本数目
D = 1 # 输入维度/神经元数目
x_seq1 = torch.ones(50, N, D)
x_seq2 = torch.zeros(50, N, D)
x_seq = torch.cat((x_seq1,x_seq2), 0)
# 构建一层LIF神经元
net = nn.Sequential(neuron.LIFNode(tau=10.0,
                                    decay_input=True,
                                    v_threshold=0.9,
                                    v_reset=0.0,
                                    step_mode='m',
                                    store_v_seq=True))
print(net)

(2)根据输入按时间步更新神经元膜电位与输出
多步模式:逐层传播,广度优先遍历,并行速度更快,适用于梯度替代法
直接计算,不需要手动写for循环

####################监视器记录神经元状态####################
# 记录膜电位
monitor_v = monitor.AttributeMonitor('v_seq',
                                      pre_forward=False,
                                      net=net,
                                      instance=neuron.LIFNode)
# 记录输出
monitor_o = monitor.OutputMonitor(net=net,
                                  instance=neuron.LIFNode)
####################多步模式:逐层传播####################
with torch.no_grad(): # 计算时关闭自动求导
    net(x_seq)
functional.reset_net(net) # 重置神经元状态
####################可视化膜电位与输出####################
v_list = monitor_v.records[0].flatten()
s_list = monitor_o.records[0].flatten()
visualizing.plot_one_neuron_v_s(v_list.numpy(),
                                s_list.numpy(),
                                v_threshold=net[0].v_threshold,
                                v_reset=net[0].v_reset,
                                figsize=(12, 8),
                                dpi=100)

使用monitor监视器记录神经元输出与成员变量(膜电位)

(3)网络结构

Sequential(
  (0): LIFNode(
    v_threshold=0.9, v_reset=0.0, detach_reset=False, step_mode=m, backend=torch, tau=10.0
    (surrogate_function): Sigmoid(alpha=4.0, spiking=True)
  )
)

(4)各时间步神经元的膜电位与输出

输入为0时,膜电位自发泄漏

(5)当时间常数tau很大时,LIF神经元退化为IF神经元

net = nn.Sequential(neuron.LIFNode(tau=1.0e8,
                                    decay_input=False,
                                    v_threshold=9.0,
                                    v_reset=0.0,
                                    step_mode='m',
                                    store_v_seq=True))
Sequential(
  (0): LIFNode(
    v_threshold=9.0, v_reset=0.0, detach_reset=False, step_mode=m, backend=torch, tau=100000000.0
    (surrogate_function): Sigmoid(alpha=4.0, spiking=True)
  )
)


总结

不同神经元的主要差别在于阈下神经动力学方程(充电方程),而放电方程与重置方程相似;
IF神经元具有记忆效应,在无输入时,神经元膜电位会一直维持在当前状态;
LIF神经元引入漏电流项,在无输入时,膜电位会恢复至静息电位;
通过monitor和visualizing可以方便地监控和绘制神经元的膜电位与输出。

参考:
[1] SpikingJelly的文档——神经元
[2] 脉冲神经网络:模型、学习算法与应用
[3] 脉冲神经网络研究进展综述

lif神经元和if神经元是两种常见的脑细胞类型,它们在神经科学研究中非常重要。 首先,lif神经元是指阈下整流模型神经元,其全称为Leaky Integrate-and-Fire(漏电积分和放电)神经元lif神经元模型认为神经元的膜电位受到其输入电流的积分,一旦膜电位达到某个特定的阈值,神经元就会发放一个动作电位。之后,膜电位会被重置,并在一个短暂的绝对不应期内无法再次发放动作电位。lif神经元模型主要用于模拟神经元的发放行为,以及神经网络的动力学。 其次,if神经元是指膜电位不应期模型神经元,其全称为Integrate-and-Fire(积分和放电)神经元。if神经元模型假设膜电位也是受到输入电流的积分,但与lif神经元不同的是,if神经元没有阈值,并且其膜电位在发放动作电位后会有一个更长的绝对不应期。if神经元模型主要用于描述神经元动作电位的频率,以及在神经网络中的同步和振荡现象。 综上所述,lif神经元和if神经元在模拟脑部神经元活动和神经网络行为上起着重要的作用。两种神经元模型都可以用来研究神经元的发放行为以及神经网络的动力学特征,但在模型中的某些细节上存在差异,例如膜电位的阈值和绝对不应期的长度。因此,在实际应用中需要根据具体的研究需求选择合适的神经元模型来进行模拟和分析。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值