SALM与多传感器融合(一)代码与数据集准备

该博客介绍了如何将激光雷达和RTK数据融合,并利用ROS进行自动驾驶中的定位。首先提供了GitHub开源代码链接,接着详细讲解了如何从官方数据集中获取和处理KITTI数据,包括数据转换为ROS的bag文件的步骤。最后,说明了如何使用rviz测试bag文件,确保数据正确显示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.开源代码

GitHub - Little-Potato-1990/localization_in_auto_driving

本篇对应代码Tag为 2.0

2.官方数据集

测试数据集:

百度网盘 请输入提取码

提取码: n9ys

激光雷达点云数据和RTK数据做融合,所以只使用数据集里的RawData数据,它包含RTK、IMU、激光雷达、摄像头等传感器的数据和他们之间的标定关系,并且时间戳已经对应好。

由于我们是使用ROS作为调试环境,所以我把一部分数据转成了ROS的bag文件,放在百度网盘里,如果不想自己转换数据,就可以直接下载这里面的bag文件使用,文件在“转换后的bag文件/2011_10_03”文件夹里。由于百度网盘单个文件大小有限制,所以我做了分卷压缩,下载完成之后需要在当前目录下输入如下指令,把他们再合成一个文件才能解压

cat bag_file*>bag.tar.gz

3.KITTI数据转成ROS的bag文件

1. 升级numpy

这一步很重要,不然后面运行会报错。kitti2bag要求numpy版本>=1.12,u

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值