CINTA:陪集与拉格朗日定理

1.设 G \mathbb{G} G是群, H \mathbb{H} H G \mathbb{G} G的子群。任取g 1 _1 1,g 2 _2 2 ∈ \in G \mathbb{G} G,则g 1 _1 1 H \mathbb{H} H=g 2 _2 2 H \mathbb{H} H当且仅当g 1 − 1 _1^{-1} 11g 2 _2 2 ∈ \in H \mathbb{H} H

证:
根据陪集的定义,
g 1 _1 1 H \mathbb{H} H= { g 1 h : h ∈ H } \lbrace g_1h:h \in\mathbb{H}\rbrace {g1h:hH}
g 2 _2 2 H \mathbb{H} H= { g 2 h : h ∈ H } \lbrace g_2h:h \in\mathbb{H}\rbrace {g2h:hH}.

证明充分性:
∀ \forall g 1 _1 1,g 2 _2 2 ∈ \in G \mathbb{G} G,g 1 _1 1 H \mathbb{H} H=g 2 _2 2 H \mathbb{H} H,则根据命题8.1,g 2 _2 2 ∈ \in g 1 _1 1 H \mathbb{H} H
因此, ∃ \exists h ∈ \in H \mathbb{H} H,g 2 _2 2=g 1 _1 1h。
则g 1 − 1 _1^{-1} 11g 2 _2 2=g 1 − 1 _1^{-1} 11g 1 _1 1h=(g 1 − 1 _1^{-1} 11g 1 _1 1)h=eh=h,而h ∈ \in H \mathbb{H} H,因此g 1 − 1 _1^{-1} 11g 2 _2 2 ∈ \in H \mathbb{H} H
充分性得证。

证明必要性:
因为g 1 − 1 _1^{-1} 11g 2 _2 2 ∈ \in H \mathbb{H} H,则 ∃ \exists h ∈ \in H \mathbb{H} H,使得g 1 − 1 _1^{-1} 11g 2 _2 2=h。
因此,g 1 _1 1g 1 − 1 _1^{-1} 11g 2 _2 2=g 1 − 1 _1^{-1} 11h ∈ \in g 1 _1 1 H \mathbb{H} H.
而g 1 _1 1g 1 − 1 _1^{-1} 11g 2 _2 2=(g 1 _1 1g 1 − 1 _1^{-1} 11)g 2 _2 2=eg 2 _2 2=g 2 _2 2,所以g 2 _2 2 ∈ \in g 1 _1 1 H \mathbb{H} H,根据命题8.1,g 1 _1 1 H \mathbb{H} H=g 2 _2 2 H \mathbb{H} H
必要性得证。

综上,原命题得证。

3.如果 G \mathbb{G} G是群, H \mathbb{H} H是群 G \mathbb{G} G的子群,且[ G \mathbb{G} G: H \mathbb{H} H]=2,请证明对任意的g ∈ \in G \mathbb{G} G,g H \mathbb{H} H= H \mathbb{H} Hg。

证:
根据定理8.1,由于[ G \mathbb{G} G: H \mathbb{H} H]=2, H \mathbb{H} H G \mathbb{G} G上有2个不同的左陪集。假设这两个左陪集分别是g 1 _1 1 H \mathbb{H} H和g 2 _2 2 H \mathbb{H} H,其中g 1 _1 1,g 2 _2 2 ∈ \in G \mathbb{G} G
由于 H \mathbb{H} H是群 G \mathbb{G} G的子群,因此 H \mathbb{H} H满足群公理,根据封闭性,则 ∀ g ∈ H \forall g \in\mathbb{H} gH,gh ∈ H \in\mathbb{H} H
若存在两个不同的左陪集,那么 g 1 , g 2 g_1,g_2 g1,g2一定是其中一个在 H \mathbb{H} H中,另一个不在 H \mathbb{H} H中。不妨设 g 1 ∈ H g_1\in\mathbb{H} g1H, g 2 ∉ H g_2\notin\mathbb{H} g2/H

①若g ∈ \in H \mathbb{H} H
由于 H \mathbb{H} H是群 G \mathbb{G} G的子群,因此 H \mathbb{H} H满足群公理,根据封闭性,则 ∀ g ∈ H \forall g \in\mathbb{H} gH,gh ∈ H \in\mathbb{H} H且hg ∈ H \in\mathbb{H} H
根据陪集的定义,
g H \mathbb{H} H= { g h : h ∈ H } \lbrace gh:h\in\mathbb{H}\rbrace {gh:hH}
H \mathbb{H} Hg= { h g : h ∈ H } \lbrace hg:h\in\mathbb{H}\rbrace {hg:hH}
由于gh ∈ H \in\mathbb{H} H且hg ∈ H \in\mathbb{H} H,则显然,g H \mathbb{H} H= H \mathbb{H} H= H \mathbb{H} Hg。

②若g ∉ \notin / H \mathbb{H} H
根据封闭性,gh ∈ G \in\mathbb{G} G且hg ∈ G \in\mathbb{G} G,但gh ∉ H \notin\mathbb{H} /H且hg ∉ H \notin\mathbb{H} /H。那么gh ∈ F \in\mathbb{F} F且hg ∈ F \in\mathbb{F} F F \mathbb{F} F为在 G \mathbb{G} G但不在 H \mathbb{H} H中的所有元素的集合,即 G \mathbb{G} G的另一个子群。
根据陪集的定义,
g H \mathbb{H} H= { g h : h ∈ H } \lbrace gh:h\in\mathbb{H}\rbrace {gh:hH}
H \mathbb{H} Hg= { h g : h ∈ H } \lbrace hg:h\in\mathbb{H}\rbrace {hg:hH}
由于gh ∈ F \in\mathbb{F} F且hg ∈ F \in\mathbb{F} F,则显然g H \mathbb{H} H= F \mathbb{F} F= H \mathbb{H} Hg。

综上,原命题得证。

4.如果群 H \mathbb{H} H是群 G \mathbb{G} G的真子群,即存在g ∈ \in G \mathbb{G} G但是g ∉ \notin / H \mathbb{H} H。请证明 ∣ \mid H \mathbb{H} H ∣ \mid ≤ \leq ∣ \mid G \mathbb{G} G ∣ \mid / / / 2。

证:
H \mathbb{H} H= G \mathbb{G} G,此时 H \mathbb{H} H G \mathbb{G} G的子群但不是真子群。根据陪集的定义,g H \mathbb{H} H= { g h : h ∈ H } \lbrace gh:h\in\mathbb{H}\rbrace {gh:hH}= { g h : h ∈ G } \lbrace gh:h\in\mathbb{G}\rbrace {gh:hG}
根据封闭性,由于g,h ∈ G \in\mathbb{G} G,那么gh ∈ G \in\mathbb{G} G,则g H \mathbb{H} H= G \mathbb{G} G
根据定理8.1,[ G \mathbb{G} G: H \mathbb{H} H]为 H \mathbb{H} H G \mathbb{G} G上不同左陪集的个数,根据上述,若 H \mathbb{H} H= G \mathbb{G} G,则 H \mathbb{H} H G \mathbb{G} G上左陪集只有一个,即为 G \mathbb{G} G

只有当 H \mathbb{H} H是真子群的时候,存在g ∈ \in G \mathbb{G} G但是g ∉ \notin / H \mathbb{H} H,此时存在代表元为 G \mathbb{G} G H \mathbb{H} H的共有元素,形成的左陪集为 H \mathbb{H} H。另外有代表元 ∈ \in G \mathbb{G} G但是 ∉ \notin / H \mathbb{H} H,形成的左陪集 ≠ \not= = H \mathbb{H} H,这样的代表元至少有一个。
则当 H \mathbb{H} H是真子群的时候, H \mathbb{H} H G \mathbb{G} G上不同左陪集的个数至少为2,即[ G \mathbb{G} G: H \mathbb{H} H] ≥ \geq 2。因此 ∣ G ∣ / ∣ H ∣ \mid\mathbb{G}\mid/\mid\mathbb{H}\mid G/H ≥ \geq 2, ∣ \mid H \mathbb{H} H ∣ \mid ≤ \leq ∣ \mid G \mathbb{G} G ∣ \mid / / / 2。原命题得证。

5.设 G \mathbb{G} G是阶为pq的群,其中p和q是素数。请证明 G \mathbb{G} G的任意真子群是循环群。

证:
G \mathbb{G} G的一个真子群是 H \mathbb{H} H。设[ G \mathbb{G} G: H \mathbb{H} H]=x,则 ∣ H ∣ \mid\mathbb{H}\mid H= ∣ G ∣ / x \mid\mathbb{G}\mid/x G/x= p q x \frac{pq}{x} xpq
由于 ∣ H ∣ \mid\mathbb{H}\mid H一定是整数,而x为为 H \mathbb{H} H G \mathbb{G} G上不同左陪集的个数也一定为整数。而p和q都是素数,没有除了1和自身外的因子,则只有以下几种情况:
①x=p, ∣ H ∣ \mid\mathbb{H}\mid H=q
②x=q, ∣ H ∣ \mid\mathbb{H}\mid H=p
③x=1, ∣ H ∣ \mid\mathbb{H}\mid H=pq
④x=pq, ∣ H ∣ \mid\mathbb{H}\mid H=1
H \mathbb{H} H G \mathbb{G} G的真子群, ∣ H ∣ ≠ ∣ G ∣ \mid\mathbb{H}\mid\not=\mid\mathbb{G}\mid H=G,排除③。
①②④中的 ∣ H ∣ \mid\mathbb{H}\mid H均为素数,所以 ∣ H ∣ \mid\mathbb{H}\mid H一定为素数。
根据推论8.2, H \mathbb{H} H是循环群。原命题得证。

7.使用群论的方法重新证明费尔马小定理和欧拉定理。

证明费尔马小定理:
假设群Z p ∗ ^*_p p,则群的阶 ∣ \mid Z p ∗ ^*_p p ∣ \mid =p-1。
设a ∈ \in Z p ∗ ^*_p p,根据推论7.3和命题7.5,ord(a)|(p-1),ord(a)= p − 1 k \frac{p-1}{k} kp1,其中k为正整数。
p-1=k × \times ×ord(a),
因此,a p − 1 ^{p-1} p1 mod p=a k × o r d ( a ) ^{k\times ord(a)} k×ord(a) mod p=(a o r d ( a ) ^{ord(a)} ord(a)) k ^k k=e k ^k k=e。
e mod p=p所以e ≡ \equiv 1 ( m o d p ) \pmod{p} (modp),因此,a p − 1 ^{p-1} p1 ≡ \equiv 1 ( m o d p ) \pmod{p} (modp)。原定理得证。

证明欧拉定理:
假设群Z n ∗ ^*_n n,则群的阶 ∣ \mid Z n ∗ ^*_n n ∣ \mid = ϕ \phi ϕ(n)。
设a ∈ \in Z n ∗ ^*_n n,根据推论7.3和命题7.5,ord(a)| ϕ \phi ϕ(n),ord(a)= ϕ ( n ) k \frac{\phi(n)}{k} kϕ(n),其中k为正整数。
ϕ \phi ϕ(n)=k × \times ×ord(a),
因此,a ϕ ( n ) ^{\phi(n)} ϕ(n) mod p=a k × o r d ( a ) ^{k\times ord(a)} k×ord(a) mod p=(a o r d ( a ) ^{ord(a)} ord(a)) k ^k k=e k ^k k=e。
e mod p=p所以e ≡ \equiv 1 ( m o d p ) \pmod{p} (modp),因此,a ϕ ( n ) ^{\phi(n)} ϕ(n) ≡ \equiv 1 ( m o d p ) \pmod{p} (modp)。原定理得证。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值