近世代数--陪集--拉格朗日定理|G|=|H|·[G:H],传递性[G:H][H:K]=[G:K]

博主是初学近世代数(群环域),本意是想整理一些较难理解的定理、算法,加深记忆也方便日后查找;如果有错,欢迎指正。
我整理成一个系列:近世代数,方便检索。

先验知识

  • G G G:非空集合+代数运算:单位元+逆元+封闭性+结合性
  • 子群 H H H H H H G G G的非空子集,对于 G G G的代数运算还是满足:单位元+逆元+封闭性+结合性,记为 H ≤ G H\le G HG
  • 陪集: g ∈ G , H g\in G,H gG,H ( G , ⋅ ) (G,·) (G,)的子群,集合 { g ⋅ h ∣ h ∈ H } \{g·h|h\in H\} { ghhH}称为 g g g H H H的左陪集。

拉格朗日定理 ∣ G ∣ = ∣ H ∣ ⋅ [ G : H ] |G|=|H|·[G:H] G=H[G:H]

  • ( G , ⋅ ) (G,·) (G,)为一个群, H ≤ G H\le G HG,则有
    (1)两个陪集 a H = b H aH=bH aH=bH,则 a − 1 b ∈ H a^{-1}b\in H a1bH
    (2)对任意 a , b ∈ G a,b\in G a,bG,有 a H = b H aH=bH aH=bH a H ⋂ b H = ∅ aH \bigcap bH=\varnothing aHbH=

证明:
(1) a H = b H → a − 1 a H = a − 1 b H → H = a − 1 b H aH=bH\rightarrow a^{-1}aH=a^{-1}bH\rightarrow H=a^{-1}bH aH=bHa1aH=a1bHH=a1bH
a H = H , aH=H, aH=H, a ∈ H a\in H aH。如果 a ∉ H , a\notin H, a/H,那么 a ∗ e = a ∉ H , a*e=a\notin H, ae=a/H, a H ≠ H aH\neq H aH=H
所以 H = a − 1 b H → a − 1 b ∈ H H=a^{-1}bH\rightarrow a^{-1}b\in H H=a1bHa1bH
(2)假设 g = a H ⋂ b H , g=aH\bigcap bH, g=aHbH,可以写成 g = a h 1 = b h 2 , → a − 1 b = h 1 h 2 − 1 ∈ H g=ah_1=bh_2,\rightarrow a^{-1}b=h_1h_2^{-1}\in H

  • 3
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值