01背包问题 cpp

有 N 件物品和一个容量是 V 的背包。每件物品只能使用一次。

第 i 件物品的体积是 vi,价值是 wi

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。

输入格式
第一行两个整数,NV,用空格隔开,分别表示物品数量和背包容积。

接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 件物品的体积和价值。

输出格式

输出一个整数,表示最大价值。


数据范围:

0<N,V≤1000
0<vi,wi≤1000


输入样例:

4 5
1 2
2 4
3 4
4 5


输出样例:

8


Cpp

#include <bits/stdc++.h>
using namespace std;
const int N = 1010;
int v[N], w[N];
int f[N][N];
int main()
{
    int n, m;
    cin >> n >> m;
    for (int i = 1; i <= n;i++)
        cin >> v[i] >> w[i];
    for (int i = 1; i <= n;i++)
    {
        for (int j = 0; j <= m;j++)
        {
            f[i][j] = f[i - 1][j];
            if(j >= v[i])
                f[i][j] = max(f[i - 1][j], f[i - 1][j - v[i]] + w[i]);
        }
    }
    cout << f[n][m] << endl;
    return 0;
}

特点 : 每个物品仅能使用一次

公式解释

f[i][j]:表示所有选法集合中,只从前i个物品中选,并且总体积 ≤ j 的选法的集合,它的值是这个集合中每一个选法的最大值.
状态转移方程

f[i][j] = max(f[i-1][j], f[i-1][j-v[i]]+w[i])

f[i-1][j]:不选第i个物品的集合中的最大值
f[i-1][j-v[i]]+w[i]:选第i个物品的集合,但是直接求不容易求所在集合的属性,这里迂回打击一下,先将第i个物品的体积减去,求剩下集合中选法的最大值.


Java

import java.util.Scanner;
public class Main {
    public static void main(String[] args) throws Exception {
        Scanner sc = new Scanner(System.in);
        int N = sc.nextInt();
        int V = sc.nextInt();
        int[] v = new int[N + 1];
        int[] w = new int[N + 1];
        for (int i = 1; i <= N; i++)
        {
            v[i] = sc.nextInt();
            w[i] = sc.nextInt();
        }
        sc.close();
        int[][] dp = new int[N + 1][V + 1];
        dp[0][0] = 0;
        for (int i = 1; i <= N;i++)
        {
            for (int j = 0; j <= V; j++) {
                if (j < v[i])
                    dp[i][j] = dp[i - 1][j];
                else
                    dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - v[i]] + w[i]);
            }
        }
        System.out.println(dp[N][V]);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值