有 N 件物品和一个容量是 V 的背包。每件物品只能使用一次。
第 i 件物品的体积是 vi
,价值是 wi
。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。
输入格式
第一行两个整数,N
,V
,用空格隔开,分别表示物品数量和背包容积。
接下来有 N
行,每行两个整数 vi
,wi
,用空格隔开,分别表示第 i
件物品的体积和价值。
输出格式
输出一个整数,表示最大价值。
数据范围:
0<N,V≤1000
0<vi,wi≤1000
输入样例:
4 5
1 2
2 4
3 4
4 5
输出样例:
8
Cpp
#include <bits/stdc++.h>
using namespace std;
const int N = 1010;
int v[N], w[N];
int f[N][N];
int main()
{
int n, m;
cin >> n >> m;
for (int i = 1; i <= n;i++)
cin >> v[i] >> w[i];
for (int i = 1; i <= n;i++)
{
for (int j = 0; j <= m;j++)
{
f[i][j] = f[i - 1][j];
if(j >= v[i])
f[i][j] = max(f[i - 1][j], f[i - 1][j - v[i]] + w[i]);
}
}
cout << f[n][m] << endl;
return 0;
}
特点 : 每个物品仅能使用一次
公式解释
f[i][j]
:表示所有选法集合中,只从前i个物品中选,并且总体积 ≤ j
的选法的集合,它的值是这个集合中每一个选法的最大值.
状态转移方程
f[i][j] = max(f[i-1][j], f[i-1][j-v[i]]+w[i])
f[i-1][j]
:不选第i个物品的集合中的最大值
f[i-1][j-v[i]]+w[i]
:选第i个物品的集合,但是直接求不容易求所在集合的属性,这里迂回打击一下,先将第i个物品的体积减去,求剩下集合中选法的最大值.
Java
import java.util.Scanner;
public class Main {
public static void main(String[] args) throws Exception {
Scanner sc = new Scanner(System.in);
int N = sc.nextInt();
int V = sc.nextInt();
int[] v = new int[N + 1];
int[] w = new int[N + 1];
for (int i = 1; i <= N; i++)
{
v[i] = sc.nextInt();
w[i] = sc.nextInt();
}
sc.close();
int[][] dp = new int[N + 1][V + 1];
dp[0][0] = 0;
for (int i = 1; i <= N;i++)
{
for (int j = 0; j <= V; j++) {
if (j < v[i])
dp[i][j] = dp[i - 1][j];
else
dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - v[i]] + w[i]);
}
}
System.out.println(dp[N][V]);
}
}