Learning a Simple Low-light Image Enhancer from Paired Low-light Instances
发表于2023CVPR
论文主要介绍了一种用于低光图像增强(LIE)的方法。在低光条件下拍摄的图像往往存在对比度低、细节模糊等问题。作者提出了一种无监督的方法,通过从低光图像对中学习自适应的先验。同时提出了一种简单的自监督机制,用于去除原始图像中不合适的特征。
论文地址:CVPR 2023 Open Access Repository
论文代码:https: //github.com/zhenqifu/PairLIE
本文贡献
-
提出了PairLIE方法:本文提出了一种名为PairLIE的无监督方法,该方法通过学习自适应的先验知识来增强低光照图像。传统的低光照图像增强算法通常使用单张输入图像和手工设计的先验知识来调整光照,但由于单张图像的信息有限以及手工先验知识的适应性不足,这些方法通常无法恢复图像细节。PairLIE方法通过学习来自低光照图像对的自适应先验知识,能够更好地提高对比度并恢复图像细节。
-
基于Retinex理论进行图像分解:为了实现准确的图像分解,本文首先对原始图像进行投影,以去除不合适的特征。通过应用Retinex理论,本文要求分解得到的两个分量应该满足重建输入图像的要求。为了保证合理的分解,文中引入了一个重建项,用于衡量重建后图像与输入图像的差异。通过估计光照分量,可以计算得到反射分量。因此,本文还添加了一个项来引导分解过程,以保证反射分量与低光照图像除以光照分量的结果之间的一致性。
-
简化网络结构和减少手工先验:与大多数现有方法使用大量手工先验知识不同,PairLIE方法只对光照分量施加了一个平滑项和一个初始化项。具体而言,初始化的光照分量是通过R、G、B通道的最大值计算得到的。相比之下,PairLIE方法使用了更简化的网络结构和较少的手工先验,同时实现了与现有方法相当的性能。
网络结构
在训练阶段,首先采用P-Net去除原始图像中不适当的特征。然后使用 L-Net 和 R-Net 来估计照明和反射率分量。使用三个损失函数来指导网络优化,包括自监督投影损失 LP 、反射一致性损失 LC 和 Retinex 损失 LR 。在测试阶段,给定低光图像,使用 P-Net、L-Net 和 R-Net 将输入分解为反射率和照度。随后,PairLIE 调整照明并使用反射率重新组合以捕获增强的图像。
损失函数
-
投影损失
P-Net网络将原始图像投影到一个更适合Retinex分解的空间中,以便更好地分解出照明和反射分量。具体而言,Lp损失函数通过计算投影图像与原始图像之间的** 欧几里得距离 **来指导投影过程。在训练过程中,网络通过最小化Lp损失函数来学习如何投影图像,以便更好地分解出照明和反射分量。
-
反射率一致性损失函数
损失函数 Lc 是指基于低光图像对的反射光照一致性损失函数,它的作用是通过学习低光图像对的反射光照一致性来提高低光图像增强的效果。在本文中,PairLIE 方法使用两个低光图像对,利用 Retinex 理论和深度学习技术将低光图像分解成反射和光照两个部分,其中反射部分应该在不同光照条件下保持一致。
-
Retinex损失
第一项:重构误差。它用于衡量重构图像与原始输入图像之间的差距。
第二项:反射率的一致性损失。它用于强制要求两幅低光图像的反射率是一致的。
第三项:平滑损失。它用于保持光照强度的平滑性,从而避免图像出现过度增强的情况。
第四项:梯度损失。它用于保持光照强度的空间一致性,从而避免在图像增强过程中出现过度锐化的情况。
实验结果
-
消融实验
设置 A:无 Lc。设置 B:无 £p。设置 C:无先决条件。
baseline 和 PairLIE 的重建误差曲线对比说明了 PairLIE 相对于 baseline 在低光图像增强方面的优越性。其中 baseline 指的是基于原始低光图像进行的分解,而 PairLIE 利用了成对的低光图像进行学习,因此能够更好地处理低光图像中的细节和纹理,从而获得更好的重建效果。