使用ollama + AnythingLLM快速且简单的在本地部署千问大模型

不多说,直接开始

一、安装ollama

ollama官网:https://ollama.com/
下载地址:https://ollama.com/download

打开以后注册并下载即可

找到自己的系统安装即可

二、下载模型并运行ollama

Ollama在Windows系统上默认安装在C:\Users\<username>\\AppData\Local\Programs\Ollama路径下。这里的<username>是你的Windows用户名。

安装ollama以后,在这个路径下安装的默认路径下进入cmd,然后输入指令:ollama run qwen2.5

我是已经装好了,所以输入指令是直接运行这个模型,如果没有下载的话就是直接下载。

要下载其他的模型也可以在网站中找:https://ollama.com/library

常用的命令有:

  serve       Start ollama
  create      Create a model from a Modelfile
  show        Show information for a model
  run         Run a model
  pull        Pull a model from a registry
  push        Push a model to a registry
  list        List models
  cp          Copy a model
  rm          Remove a model
  help        Help about any command

可以看到页面中让执行ollama run qwen2.5即可

一般来说run是用来跑模型的,但是如果本地没有这个模型的话,ollama会自动下载

PS:国内的网络问题不知道有没有解决,下载模型的时候偶尔速度很快,但是很多时候速度很慢以至于提示TLS handshake timeout,这种情况建议重启电脑或者把ollama重启一下(我下载的时候挂了梯子,下载速度还比较正常)

下载完成以后我们输入ollama list可以查下载了哪些模型

这里我们直接输入ollama run qwen2.5,就可以开始对话了

三、下载并配置AngthingLLM

AngthingLLM官网:https://useanything.com
下载链接:https://useanything.com/download

同样的选择对应的系统版本即可

在使用前,需要启动Ollama服务

执行ollama serve,ollama默认地址为:http://127.0.0.1:11434

然后双击打开AngthingLLM

我已经配置过,所以不好截图最开始的配置界面了,不过都能在设置里面找到

首先是LLM 首选项,选择ollama,URL填写默认地址,后面的模型选择qwen2.5,token填4096

向量数据库就直接默认的LanceDB即可

此时我们新建工作区,名字就随便取,在右边就会有对话界面出现了

你就有了自己本地的语言模型了

接下来上传自己的数据搭建一个自己的知识库AI

点击上传键后,在My Documents中上传自己的数据文件,再Move to Workspace

这样AI就能用知识库里的资料来回答你的问题,并在提供答案时注明所引用的信息来源。

其实整个过程并不复杂,唯一耗时的环节就是下载模型。我原本打算使用Open WebUI,但由于我的电脑上没有安装Docker,所以转而使用了AnythingLLM。等将来有时间了,我打算设置Docker环境,以便使用Open WebUI。

如果模型实在下不下来,也可以搞离线模型

Windows系统下ollama存储模型的默认路径是C:\Users\wbigo.ollama\models,一个模型库网址:魔搭社区

### 关于OllamaAnythingLLM的技术介绍 #### Ollama简介 Ollama是一个开源的大规模语言模型服务工具,旨在帮助用户迅速在本地环境中启动并运行大规模的语言模型。借助此平台,用户仅需执行单一命令即可轻松部署诸如Llama 2乃至最新的Llama 3等开放源码版本的大规模语言模型到Docker容器内[^2]。 #### AnythingLLM概述 AnythingLLM提供了一种灵活的选择方案——自带的`AnythingLLMEmbedder`用于嵌入功能,并默认配置了一个高效的内置向量数据库LanceDB来支持其操作环境中的数据存储需求[^1]。 ### 实际应用案例分析 #### 部署流程说明 对于希望利用上述两项技术构建个人项目的开发者而言,可以从以下几个方面入手: - **环境准备**:确保已安装好必要的依赖项,比如Python解释器及相关库文件; - **获取资源包**:下载官方发布的最新版Ollama镜像以及AnythingLLM的相关组件; - **编写脚本**:创建适合特定应用场景的工作流定义文档(如YAML格式),指定所需加载的基础模型和其他参数设置; ```yaml version: '3' services: ollama_service: image: "ollama/ollama" ports: - "8080:8080" anythingllm_service: build: . depends_on: - ollama_service ``` - **测试验证**:按照官方指南完成初步集成后的基本功能性检测工作,确认各模块间交互正常无误。 ### 开发者社区贡献 考虑到当前网络上有关LLM方面的资料相对匮乏,新手入门难度较大这一现状,积极参与由Ollama发起的各种交流活动显得尤为重要。这不仅有助于降低学习曲线,还能促进整个生态系统健康发展[^3]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值