卷积神经网络(CNN)前向传播手撕

题目

手写数字识别的卷积神经网络(CNN)代码,实现前向传播

解答

import torch
import torch.nn as nn

class Net(nn.Module):
    def __init__(self):
        # super(Net, self).__init__()
        super().__init__()
        self.model = nn.Sequential(
            # The size of the picture is 28x28
            nn.Conv2d(in_channels = 1,out_channels = 16,kernel_size = 3,stride = 1,padding = 1),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size = 2,stride = 2),
            
            # The size of the picture is 14x14
            nn.Conv2d(in_channels = 16,out_channels = 32,kernel_size = 3,stride = 1,padding = 1),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size = 2,stride = 2),
            
            # The size of the picture is 7x7
            nn.Conv2d(in_channels = 32,out_channels = 64,kernel_size = 3,stride = 1,padding = 1),
            nn.ReLU(),
            
            nn.Flatten(),
            nn.Linear(in_features = 7 * 7 * 64,out_features = 128),
            nn.ReLU(),
            nn.Linear(in_features = 128,out_features = 10),
            nn.Softmax(dim=1)
        )
        
    def forward(self,input):
        output = self.model(input)
        return output

net = Net()
# 将模型转换到device中,并将其结构显示出来
# print(net.to(device))

trainImgs = torch.Tensor(32, 1, 28, 28)  # [B, C, H, W]
outputs = net(trainImgs)
print(outputs.shape)  # torch.Size([32, 10])

注意

在 Python 中,super(Net, self).__init__()或super().__init__() 的作用是调用父类的构造函数,确保子类 Net 继承自父类(如 torch.nn.Module)的属性和方法被正确初始化。

1. 代码含义

  • super():返回父类的代理对象,用于调用父类的方法。

  • Net:当前子类的名称。

  • self:当前子类的实例对象。

  • __init__():父类的构造函数方法。

组合起来
调用 Net 的父类(例如 torch.nn.Module)的 __init__() 方法,确保父类的初始化逻辑被执行。


2. 为什么需要这行代码?

  • 继承父类功能
    在 PyTorch 中,自定义神经网络模型必须继承 torch.nn.Module
    父类 Module 内部定义了模型的核心机制(如参数管理、GPU 转换等)。
    如果不调用父类的 __init__(),这些功能将无法正确初始化。

  • 避免潜在错误
    如果省略这行代码,子类 Net 将无法使用 Module 的功能,导致以下问题:

    • 模型参数(如 Conv2d 的权重)不会被识别和优化。

    • 无法将模型移动到 GPU(.to(device))。

    • 无法正确保存或加载模型(torch.save / torch.load)。

3.在 PyTorch 中的具体作用

在 PyTorch 模型中,父类 torch.nn.Module 的 __init__() 会做以下关键操作:

  1. 注册参数(Parameters)和子模块(Submodules)
    将 self.conv1self.linear 等子层添加到模型的参数列表中,优化器(如 torch.optim.SGD)才能找到并更新这些参数。

  2. 设备管理
    跟踪模型所在的设备(CPU/GPU),确保输入数据和模型参数在同一设备上。

  3. 模型序列化
    支持模型的保存(torch.save)和加载(torch.load)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

北京地铁1号线

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值