Anaconda里装pytorh跑深度学习模型使用Anaconda Prompt详细步骤

1.新建环境
2.激活环境
3.安装pytorch包
4.测试

一、新建环境


conda create -n pytorch37 python=3.7
%%建一个python为3.7,名字叫pytorch37的房子,一定要记得
%%新建环境格式为conda create -n 房子名 python=3.7

下面光标开始闪烁

Solving environment: done
%%光标在这里闪烁

==> WARNING: A newer version of conda exists. <==
  current version: 4.5.11
  latest version: 22.9.0

Please update conda by running

    $ conda update -n base -c defaults conda
%%这个后面可以更行一下conda版本

## Package Plan ##

  environment location: D:\Anaconda\envs\pytorch37

  added / updated specs:
    - python=3.7


The following NEW packages will be INSTALLED:

    ca-certificates: 2022.07.19-haa95532_0
    certifi:         2022.9.24-py37haa95532_0
    openssl:         1.1.1q-h2bbff1b_0
    pip:             22.2.2-py37haa95532_0
    python:          3.7.13-h6244533_1
    setuptools:      63.4.1-py37haa95532_0
    sqlite:          3.39.3-h2bbff1b_0
    vc:              14.2-h21ff451_1
    vs2015_runtime:  14.27.29016-h5e58377_2
    wheel:           0.37.1-pyhd3eb1b0_0
    wincertstore:    0.2-py37haa95532_2
    

输入Y

Proceed ([y]/n)? y

开始安装工具包,可能有点慢
在这里插入图片描述
完成后显示

Preparing transaction: done
Verifying transaction: done
Executing transaction: done
#
# To activate this environment, use
#
#     $ conda activate pytorch37
#
# To deactivate an active environment, use
#
#     $ conda deactivate

二、激活环境

(base) C:\Users\Administrator>conda activate pytorch37
%%激活刚才新建环境

(pytorch37) C:\Users\Administrator>

三、安装pytorch包

显卡cuda版本,以及去pytorch官网查看显卡cuda版本对应的pytorch版本

查看方式一:自己电脑显卡cuda版本,如下图

右击----控制面板
在这里插入图片描述
帮助—系统信息-----组件,这里显示 cuda是11.4

在这里插入图片描述
查看方式二:输入直接看


(pytorch37) C:\Users\Administrator>nvidia-smi
%%输入代码直接查看
Tue Oct 25 11:19:04 2022
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 473.34       Driver Version: 473.34       CUDA Version: 11.4     |
|-------------------------------+----------------------+----------------------+
| GPU  Name            TCC/WDDM | Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  NVIDIA GeForce ... WDDM  | 00000000:01:00.0 N/A |                  N/A |
| 23%    0C    P8    N/A /  N/A |    420MiB /  2048MiB |     N/A      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
|  No running processes found                                                 |
+-----------------------------------------------------------------------------+

(pytorch37) C:\Users\Administrator>

去官网下载pytorh

在官网选择cuda是11.4版及11.4版以下都行

这里我选择了11.3的

在这里插入图片描述
在这里插入图片描述
下面两种方式都可以

%%第一种
(pytorch37) C:\Users\Administrator>conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch

或者

%%依次分别执行这三条命令,这是上一步图片红圆圈代码截取

pip install torch==1.12.0

pip install torchvision==0.13.0

pip install torchaudio==0.12.0

第一种运行如下

(pytorch37) C:\Users\Administrator>conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch
%%下载时把-c pytorch去掉默认清华镜像源,网速快一点,这里面包大小加起来2.2真的慢。
Solving environment: done

==> WARNING: A newer version of conda exists. <==
  current version: 4.5.11
  latest version: 22.9.0

Please update conda by running

    $ conda update -n base -c defaults conda
%%更新当前conda版本,回到base环境下更新


## Package Plan ##

  environment location: D:\Anaconda\envs\pytorch37

  added / updated specs:
    - cudatoolkit=11.3
    - pytorch
    - torchaudio
    - torchvision


The following packages will be downloaded:

    package                    |            build
    ---------------------------|-----------------
    brotlipy-0.7.0             |py37h2bbff1b_1003         372 KB
    pycparser-2.21             |     pyhd3eb1b0_0          94 KB
    lerc-3.0                   |       hd77b12b_0         142 KB
    typing_extensions-4.3.0    |   py37haa95532_0          43 KB
    libwebp-1.2.4              |       h2bbff1b_0          76 KB
    libpng-1.6.37              |       h2a8f88b_0         598 KB
    zlib-1.2.13                |       h8cc25b3_0         145 KB
    numpy-1.21.5               |   py37h7a0a035_3          24 KB
    torchaudio-0.12.1          |       py37_cu113         3.7 MB  pytorch
    libuv-1.40.0               |       he774522_0         332 KB
    win_inet_pton-1.1.0        |   py37haa95532_0          33 KB
    lz4-c-1.9.3                |       h2bbff1b_1         141 KB
    six-1.16.0                 |     pyhd3eb1b0_1          19 KB
    numpy-base-1.21.5          |   py37hca35cd5_3         5.6 MB
    idna-3.4                   |   py37haa95532_0         108 KB
    zstd-1.5.2                 |       h19a0ad4_0         1.3 MB
    freetype-2.10.4            |       hd328e21_0         490 KB
    requests-2.28.1            |   py37haa95532_0         100 KB
    pytorch-mutex-1.0          |             cuda           3 KB  pytorch
    mkl_random-1.2.2           |   py37hf11a4ad_0         249 KB
    intel-openmp-2021.4.0      |    haa95532_3556         3.2 MB
    libdeflate-1.8             |       h2bbff1b_5          62 KB
    cffi-1.15.1                |   py37h2bbff1b_0         221 KB
    torchvision-0.13.1         |       py37_cu113         6.0 MB  pytorch
    urllib3-1.26.12            |   py37haa95532_0         178 KB
    mkl_fft-1.3.1              |   py37h277e83a_0         154 KB
    charset-normalizer-2.0.4   |     pyhd3eb1b0_0          33 KB
    mkl-2021.4.0               |     haa95532_640       181.6 MB
    jpeg-9e                    |       h2bbff1b_0         374 KB
    cudatoolkit-11.3.1         |       h59b6b97_2       820.7 MB
    tk-8.6.12                  |       h2bbff1b_0         3.5 MB
    mkl-service-2.4.0          |   py37h2bbff1b_0          55 KB
    xz-5.2.6                   |       h8cc25b3_0         364 KB
    pytorch-1.12.1             |py3.7_cuda11.3_cudnn8_0        1.19 GB  pytorch
    cryptography-38.0.1        |   py37h21b164f_0         1.1 MB
    libwebp-base-1.2.4         |       h2bbff1b_0         327 KB
    pyopenssl-22.0.0           |     pyhd3eb1b0_0          49 KB
    libtiff-4.4.0              |       h8a3f274_0         1.1 MB
    pillow-9.2.0               |   py37hdc2b20a_1         1.0 MB
    pysocks-1.7.1              |           py37_1          27 KB
    ------------------------------------------------------------
                                           Total:        2.20 GB

The following NEW packages will be INSTALLED:

    blas:               1.0-mkl
    brotlipy:           0.7.0-py37h2bbff1b_1003
    cffi:               1.15.1-py37h2bbff1b_0
    charset-normalizer: 2.0.4-pyhd3eb1b0_0
    cryptography:       38.0.1-py37h21b164f_0
    cudatoolkit:        11.3.1-h59b6b97_2
    freetype:           2.10.4-hd328e21_0
    idna:               3.4-py37haa95532_0
    intel-openmp:       2021.4.0-haa95532_3556
    jpeg:               9e-h2bbff1b_0
    lerc:               3.0-hd77b12b_0
    libdeflate:         1.8-h2bbff1b_5
    libpng:             1.6.37-h2a8f88b_0
    libtiff:            4.4.0-h8a3f274_0
    libuv:              1.40.0-he774522_0
    libwebp:            1.2.4-h2bbff1b_0
    libwebp-base:       1.2.4-h2bbff1b_0
    lz4-c:              1.9.3-h2bbff1b_1
    mkl:                2021.4.0-haa95532_640
    mkl-service:        2.4.0-py37h2bbff1b_0
    mkl_fft:            1.3.1-py37h277e83a_0
    mkl_random:         1.2.2-py37hf11a4ad_0
    numpy:              1.21.5-py37h7a0a035_3
    numpy-base:         1.21.5-py37hca35cd5_3
    pillow:             9.2.0-py37hdc2b20a_1
    pycparser:          2.21-pyhd3eb1b0_0
    pyopenssl:          22.0.0-pyhd3eb1b0_0
    pysocks:            1.7.1-py37_1
    pytorch:            1.12.1-py3.7_cuda11.3_cudnn8_0 pytorch
    pytorch-mutex:      1.0-cuda                       pytorch
    requests:           2.28.1-py37haa95532_0
    six:                1.16.0-pyhd3eb1b0_1
    tk:                 8.6.12-h2bbff1b_0
    torchaudio:         0.12.1-py37_cu113              pytorch
    torchvision:        0.13.1-py37_cu113              pytorch
    typing_extensions:  4.3.0-py37haa95532_0
    urllib3:            1.26.12-py37haa95532_0
    win_inet_pton:      1.1.0-py37haa95532_0
    xz:                 5.2.6-h8cc25b3_0
    zlib:               1.2.13-h8cc25b3_0
    zstd:               1.5.2-h19a0ad4_0

Proceed ([y]/n)?

输入y下载
在这里插入图片描述
下载完成后
在这里插入图片描述

(pytorch37) C:\Users\Administrator>  conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch
%%可以尝试在输一遍,所有包安装完成
Solving environment: done


==> WARNING: A newer version of conda exists. <==
  current version: 4.5.11
  latest version: 22.9.0

Please update conda by running

    $ conda update -n base -c defaults conda

# All requested packages already installed.

%%这里我想更新以下主环境里Anaconda版本,你们可更新可跳过

(base) C:\Users\Administrator>conda update -n base -c defaults conda
%%光标闪烁
%%输入y
%%等待下载
%%下载更新完成

四、测试

重新打开进入测试

%%查看环境
(base) C:\Users\Administrator>conda info -e
# conda environments:
#
base                  *  D:\Anaconda
lablimg1                 D:\Anaconda\envs\lablimg1
pytorch37                D:\Anaconda\envs\pytorch37

%%进入环境
(base) C:\Users\Administrator>conda activate pytorch37

%%测试
(pytorch37) C:\Users\Administrator>python
Python 3.7.13 (default, Oct 19 2022, 10:19:43) [MSC v.1916 64 bit (AMD64)] :: Anaconda, Inc. on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import torch
>>> exit(0)

(pytorch37) C:\Users\Administrator>

接下一篇内容使用现成数据集跑一个深度学习

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值