基于GAN的音频隐写术最优嵌入方法研究

目录

1.1简介

1.2训练算法 

1.3 隐写算法

1.3.1使用GAN的图像隐写引用


 文章:APPROACHING OPTIMAL EMBEDDING IN AUDIO STEGANOGRAPHY WITH GAN

1.1简介

该文实际是对STC方法的改进。使用GAN方法训练的得到一个生成器,该生成器根据载体音频 cover audio生成最佳嵌入概率图,该嵌入概率图的上的每个点反映了对应的载体点的嵌入程度。

1.2训练算法 

在文中给出的训练算法,c = {ci} ∈ Z^{1*n}表示载体, s = {si} ∈ Z^{1*n} 表示隐写后的音频. p = {pi} ∈ [0, 0.5]^{1*n} 表示嵌入率, m = {mi} ∈ [-1, 1]^{1*n} 修改图modification map,ρ= {ρi} 表示嵌入成本, and r = {ri} ∈ [0, 1]^{1*n}表示[0, 1]之间的随机数。.

 

文中给出了算法对应的配图:

概括来说,在该算法中,cover audio经过生成器生成概率图P,概率图经过公式m_i = -0.5*tanh(\lambda (p_i - 2*r_i)) + 0.5*tanh(\lambda (p_i - 2*(1 - r_i)))得到模拟的嵌入图m,最终隐写音频s = c + m。如此以来训练出的生成器就能生成一个更好的概率图,指导嵌入算法STC。

1.3 隐写算法

STC隐写算法:s = STC(c, Message, ρ)。其中ρ表示嵌入成本,可以通过概率图计算得到

\rho_i = ln(\frac{2}{p_i} - 2),使用GAN训练好的生成器可以得到合适的p,以此计算的嵌入成本也能显著降低。

图示如下:

1.3.1使用GAN的图像隐写引用

[14]、[15]引用了使用GAN的图像隐写方面的研究。

[14] W. Tang, S. Tan, B. Li, and J. Huang, “Automatic steganographic distortion learning using a generative adversarial network,” IEEE Signal Processing Letters, vol.24, no. 10, pp. 1547–1551, 2017.
[15] J. Yang, D. Ruan, J. Huang, X. Kang, and Y. Q. Shi,“An embedding cost learning framework using GAN,”IEEE Transactions on Information Forensics and Security, vol. 15, pp. 839–851, 2020

 

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值