目录
文章:APPROACHING OPTIMAL EMBEDDING IN AUDIO STEGANOGRAPHY WITH GAN
1.1简介
该文实际是对STC方法的改进。使用GAN方法训练的得到一个生成器,该生成器根据载体音频 cover audio生成最佳嵌入概率图,该嵌入概率图的上的每个点反映了对应的载体点的嵌入程度。
1.2训练算法
在文中给出的训练算法,c = {ci} ∈ 表示载体, s = {si} ∈ 表示隐写后的音频. p = {pi} ∈ 表示嵌入率, m = {mi} ∈ 修改图modification map,ρ= {ρi} 表示嵌入成本, and r = {ri} ∈ 表示[0, 1]之间的随机数。.
文中给出了算法对应的配图:
概括来说,在该算法中,cover audio经过生成器生成概率图P,概率图经过公式得到模拟的嵌入图m,最终隐写音频s = c + m。如此以来训练出的生成器就能生成一个更好的概率图,指导嵌入算法STC。
1.3 隐写算法
STC隐写算法:s = STC(c, Message, ρ)。其中ρ表示嵌入成本,可以通过概率图计算得到
,使用GAN训练好的生成器可以得到合适的p,以此计算的嵌入成本也能显著降低。
图示如下:
1.3.1使用GAN的图像隐写引用
[14]、[15]引用了使用GAN的图像隐写方面的研究。
[14] W. Tang, S. Tan, B. Li, and J. Huang, “Automatic steganographic distortion learning using a generative adversarial network,” IEEE Signal Processing Letters, vol.24, no. 10, pp. 1547–1551, 2017.
[15] J. Yang, D. Ruan, J. Huang, X. Kang, and Y. Q. Shi,“An embedding cost learning framework using GAN,”IEEE Transactions on Information Forensics and Security, vol. 15, pp. 839–851, 2020