欧拉定理和费马小定理的证明

定理内容

欧拉定理:若正整数 a a a p p p p ≠ 1 p\ne 1 p=1)满足 gcd ⁡ ( a , p ) = 1 \gcd(a,p)=1 gcd(a,p)=1,则 a ϕ ( p ) ≡ 1 ( m o d p ) a^{\phi(p)}\equiv 1 \pmod{p} aϕ(p)1(modp)

费马小定理:若 gcd ⁡ ( a , p ) = 1 \gcd(a,p)=1 gcd(a,p)=1,且 p p p为质数,则 a p − 1 ≡ 1 ( m o d p ) a^{p-1}\equiv 1 \pmod{p} ap11(modp)。(实际上是欧拉定理的特殊形式)

证明

对于所有的质数 p p p都有 ϕ ( p ) = p − 1 \phi(p)=p-1 ϕ(p)=p1,故我们只需证明欧拉定理即可。

假设 [ 1 , p ] [1,p] [1,p]中与 p p p互质的数分别为 X 1 X_1 X1 X 2 X_2 X2…… X ϕ ( p ) X_{\phi(p)} Xϕ(p)(互不相同),则 ∀ i ∈ [ 1 , ϕ ( p ) ] X i ∈ [ 1 , p ) \forall_{i\in [1,\phi(p)]}X_i \in[1,p) i[1,ϕ(p)]Xi[1,p)。(此处成立是因为 p ≠ 1 p\ne 1 p=1

对于 a X 1 aX_1 aX1 a X 2 aX_2 aX2…… a X ϕ ( p ) aX_{\phi(p)} aXϕ(p),它们模 p p p的值必然互不相等。假如存在 a X i ≡ a X j ( m o d p ) ( i ≠ j ) aX_i\equiv aX_j \pmod{p}(i\ne j) aXiaXj(modp)(i=j),不妨设 X i > X j X_i >X_j Xi>Xj那么就有 p ∣ ( a X i − a X j ) p \mid (aX_i - aX_j) p(aXiaXj),由于 gcd ⁡ ( a , p ) = 1 \gcd(a,p)=1 gcd(a,p)=1,就有 p ∣ ( X i − X j ) p \mid (X_i-X_j) p(XiXj),但是 X i − X j < p X_i-X_j<p XiXj<p,产生矛盾,因此结论成立。

一定有 ∀ i ∈ [ 1 , ϕ ( p ) ] gcd ⁡ ( a X i , p ) = 1 \forall_{i\in[1,\phi(p)]}\gcd(aX_i,p)=1 i[1,ϕ(p)]gcd(aXi,p)=1,因为 g c d ( a , p ) = 1 gcd(a,p)=1 gcd(a,p)=1 g c d ( X i , p ) = 1 gcd(X_i,p)=1 gcd(Xi,p)=1。由欧几里得算法得到 ∀ i ∈ [ 1 , n ] gcd ⁡ ( p , a X i m o d    p ) = 1 \forall_{i\in[1,n]}\gcd(p,aX_i\mod p)=1 i[1,n]gcd(p,aXimodp)=1。也就是说,对于所有的 a X i m o d    p aX_i\mod p aXimodp都必然与 X j X_j Xj一一对应,因为它们都是 [ 1 , p ) [1,p) [1,p)里面不重复的与 p p p互质的数。那么有以下式成立:
∏ i = 1 ϕ ( p ) a X i ≡ ∏ i = 1 ϕ ( p ) X i ( m o d p ) \prod\limits_{i=1}^{\phi(p)}aX_i\equiv \prod\limits_{i=1}^{\phi(p)}X_i\pmod{p} i=1ϕ(p)aXii=1ϕ(p)Xi(modp)
也即:
a ϕ ( p ) ∏ i = 1 ϕ ( p ) X i ≡ ∏ i = 1 ϕ ( p ) X i ( m o d p ) a^{\phi(p)}\prod\limits_{i=1}^{\phi(p)}X_i\equiv \prod\limits_{i=1}^{\phi(p)}X_i\pmod{p} aϕ(p)i=1ϕ(p)Xii=1ϕ(p)Xi(modp)
注意,同余没有同除性,所以不能两边同时消掉。但是我们可以利用其同减性:
( a ϕ ( p ) − 1 ) ∏ i = 1 ϕ ( p ) X i ≡ 0 ( m o d p ) (a^{\phi(p)}-1)\prod\limits_{i=1}^{\phi(p)}X_i\equiv 0 \pmod{p} (aϕ(p)1)i=1ϕ(p)Xi0(modp)
也即:
p ∣ ( a ϕ ( p ) − 1 ) ∏ i = 1 ϕ ( p ) X i p \mid (a^{\phi(p)}-1)\prod\limits_{i=1}^{\phi(p)}X_i p(aϕ(p)1)i=1ϕ(p)Xi

由于:
gcd ⁡ ( p , ∏ i = 1 ϕ ( p ) X i ) = 1 \gcd(p,\prod\limits_{i=1}^{\phi(p)}X_i)=1 gcd(p,i=1ϕ(p)Xi)=1
所以:
p ∣ ( a ϕ ( p ) − 1 ) p\mid(a^{\phi(p)}-1) p(aϕ(p)1)
也就是说:
a ϕ ( p ) − 1 ≡ 0 ( m o d p ) a^{\phi(p)}-1 \equiv 0 \pmod{p} aϕ(p)10(modp)
就可以得出:
a ϕ ( p ) ≡ 1 ( m o d p ) a^{\phi(p)} \equiv 1 \pmod{p} aϕ(p)1(modp)

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值