7.10 常系数线性微分方程组解法举例

 

第十节 常系数线性微分方程组解法举例

在研究实际问题时,我们经常会遇到多个微分方程联立的情况,这些方程共同确定具有同一自变量的多个函数,这种情况被称为微分方程组。当微分方程组中的每一个微分方程都是常系数线性微分方程时,我们称之为常系数线性微分方程组。本节将详细介绍如何解决这类方程组。

概念介绍

常系数线性微分方程组是指所有微分方程都具有常数系数且为线性的微分方程组。这类方程组的特点在于它们的解法较为直接,并且可以系统化地处理。

解法步骤

解常系数线性微分方程组通常包括以下几个步骤:

第一步:消元求高阶微分方程

首先,从方程组中消去一些未知函数及其导数,将问题转化为只含有一个未知函数的高阶常系数线性微分方程。这一步是通过代数操作,如加减和代入等,来简化方程组。

第二步:解高阶微分方程

解得高阶微分方程后,接下来是求出这个高阶方程的解,这通常涉及特征方程的求解和对应的指数函数解法。

第三步:代入求其余未知函数

最后,将求得的解代回原方程组,通常可以直接求出其余未知函数的解,而无需进一步的积分操作。

例子说明

考虑以下由两个一阶常系数线性方程组成的微分方程组:

  • (10-1) 方程
  • (10-2) 方程

首先,消去未知函数 y,从(10-2)式得到 y 的表达式。对该表达式求导,得到一个新的方程。然后,将得到的表达式代入(10-1)式并化简,得到一个关于 z 的二阶常系数线性微分方程,其通解形式为 𝑧=(𝐶1+𝐶2𝑥)𝑒𝑥z=(C1​+C2​x)ex。

接着,将 z 的通解代回 y 的表达式,求出 y 的解。将两个解联立起来,便得到了原方程组的通解。

特解求解

如果要求满足特定初值条件的特解,如 𝑦(0)=1y(0)=1 和 𝑧(0)=0z(0)=0,我们只需要将这些条件代入上述通解表达式,并解出常数 𝐶1C1​ 和 𝐶2C2​ 的值。这样就得到了满足特定初值条件的特解。

总结

常系数线性微分方程组的解法虽然步骤明确,但需要准确处理代数运算和求导等过程,才能确保求解的正确性。理解和掌握这些步骤,将有助于解决实际应用中遇到的相关问题。

 

 

例2:解微分方程组

在本例中,我们将看到如何用记号 𝐷D 表示微分操作来求解微分方程组。这种表示法有助于简化计算并类比代数方程的解法。

方程组的建立

首先,用 𝐷D 表示对自变量 𝑡t 的微分运算 𝑑𝑑𝑡dtd​。例如,𝐷𝑦Dy 表示 𝑑𝑦𝑑𝑡dtdy​,𝐷2𝑦D2y 表示 𝑑2𝑦𝑑𝑡2dt2d2y​,依此类推。方程组可以表示为:

方程简化和消元

我们可以通过消元法简化和求解方程组。为了消去 𝑥x,我们对方程 (10−8)(10−8) 进行微分并从 (10−7)(10−7) 中减去,得到:

接着,将 (10−9)(10−9) 的 𝐷D 运算结果加到 (10−8)(10−8) 上,得到一个只涉及 𝑦y 的四阶非齐次线性方程:

求解高阶微分方程

方程 (10−10)(10−10) 的特征方程为:

解特征方程得到特征根,并据此求出 𝑦y 的通解。特解通过特定方法求得,例如可以容易求得 𝑦∗=𝑒𝑡y∗=et,则通解为:

其中,𝛼α 和 𝛽β 是根据特征方程求得的具体值。

求解其它未知函数

再求 𝑥x 的表达式,由 (10−9)(10−9) 式,得:

代入 𝑦y 的通解 (10−11)(10−11),求得 𝑥x 的表达式:

解的联立与特性

将 (10−11)(10−11) 和 (10−12)(10−12) 联立起来,即可得到原方程组的通解。注意,在求得一个未知函数后,求另一个未知函数时通常不需再积分,这避免了新的任意常数的引入,保持了任意常数之间的确定关系。

通过以上步骤,我们展示了如何系统地解常系数线性微分方程组,同时也看到了如何用行列式方法来验证解的正确性和完整性。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏驰和徐策

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值