自学历程07-CA注意力机制

引言

        传统的注意力模型,如通道注意力(Squeeze-and-Excitation, SE),尽管在提升网络性能方面取得了显著成效,但它们主要关注于通道级的特征重标定,忽略了空间维度的位置信息。SE机制通过全局平均池化挤压空间维度,导致重要空间细节信息的丢失,特别是在处理具有复杂空间结构的图像时。而CBAM(Convolutional Block Attention Module)虽然试图通过并行的空间和通道注意力模块来增强模型的表征能力,但其处理空间信息的方式相对简单,可能不足以捕捉图像中复杂的空间依赖关系,且增加了模型的计算复杂度。为了解决这一问题,研究者提出了坐标注意力机制(Coordinate Attention, CA),旨在将位置信息融入通道注意力中。坐标注意力机制通过在两个空间维度(高度和宽度)上分别进行注意力的计算,能够更精确地捕捉到图像中的空间分布特征,从而更全面地捕获特征间的依赖关系。

一、CA注意力机制的结构

       CA注意力机制,通过将位置信息嵌入到通道注意力中,来增强移动网络的性能。与通过2D全局池化将特征张量转换为单一特征向量的通道注意力不同,坐标注意力将通道注意力分解为两个1D特征编码过程,分别沿着两个空间方向聚合特征。通过这种方式可以捕捉对视觉任务至关重要的长距离依赖性。CA注意力机制是一种新的并且高效的注意力机制,通过将位置信息嵌入到通道注意力中,使移动网络能够在避免引入显著计算开销的情况下,关注更大的区域。为了减轻2D全局池化造成的位置信息丢失,将通道注意力分解为两个并行的1D特征编码过程,以有效地将空间坐标信息整合到生成的注意力图中。具体来说,利用了两个1D全局池化操作,分别沿垂直和水平方向聚合输入特征,生成两个包含方向特定信息的特征图。这两个特征图随后分别被编码成两个注意力图,每个图都能够捕捉输入特征图沿一个空间方向的长距离依赖性​​。CA注意力机制结构图如下图所示。

        CA注意力将输入特征图转换为带有位置信息的注意力图,进而重新加权原始输入。下面是这个过程的详细介绍:

  1. 输入:

    • 输入特征图大小为C×H×W,其中 C 是通道数,H 和 W 分别是高度和宽度。
  2. 空间池化:

    • X Avg Pool:对每个通道执行沿宽度W的全局平均池化,得到一个C×H×1 的特征图,捕捉高度方向的信息。
    • Y Avg Pool:对每个通道执行沿高度H的全局平均池化,得到一个 C×1×W 的特征图,捕捉宽度方向的信息。
  3. 特征融合与转换:

    • Concat + Conv2d:将两个池化后的特征图在通道维度上拼接,形成C/r×1×(W+H) 的特征图,并通过 1×11×1的二维卷积层(Conv2d)来融合和转换特征。
  4. 批量归一化与非线性激活:

    • BatchNorm + Non-linear:对卷积后的特征图进行批量归一化(BatchNorm),并通过非线性激活函数(如ReLU)增加模型的表达能力。
  5. 分裂与二维卷积:

    • Split:将批量归一化和激活后的特征图分裂为两个 C×1×W 和C×H×1的特征图。
    • Conv2d:通过另外两个 1×11×1的二维卷积层分别处理分裂后的特征图。
  6. Sigmoid激活与重标定:

    • Sigmoid:对两个卷积后的特征图应用Sigmoid激活函数,生成两个注意力图,这两个图将分别在宽度和高度上对输入特征图进行重标定。
  7. 特征重权:

    • Re-weight:将通过Sigmoid激活的注意力图乘以原始的 C×H×W 输入特征图,以此来重新加权原始特征,强化或弱化某些特征。
  8. 输出:

    • 输出加权后的特征图C×H×W,这个特征图已经结合了原始输入特征的通道信息和空间位置信息。

二、CA注意力机制的优势

坐标注意力(CA)机制的优势体现在以下几个方面:

  1. 更精确的对象定位:CA能够比SE注意力和CBAM更准确地定位到感兴趣的对象。这是因为CA考虑了位置信息的编码方式,而CBAM的空间注意力模块通过将通道维度压缩到1,可能会导致信息损失​​。

  2. 减少计算开销:大多数注意力机制带来的计算开销对于移动网络来说是不可承受的。CA使用合适的减少比率来减少瓶颈中的通道维度,避免了过多的信息损失。相比之下,SE注意力只计算通道间的信息,但忽略了对视觉任务中捕获对象结构至关重要的位置信息​​。

  3. 捕获长距离依赖性:CA通过使用两个互补的一维全局池化操作,能够捕获视觉任务中至关重要的空间位置间的长距离依赖性。与CBAM不同,后者使用7×7的卷积核来编码局部空间信息,CA机制则通过全局信息编码来实现​​。

  4. 有效整合空间坐标信息:为了减轻2D全局池化造成的位置信息损失,CA将通道注意力分解为两个并行的一维特征编码过程,有效地将空间坐标信息整合到生成的注意力图中。这种方法分别沿垂直和水平方向聚合输入特征,生成两个包含方向特定信息的特征图,然后分别编码成两个注意力图,每个图捕获输入特征图沿一个特定方向的长距离依赖性​​。

总结

        亲测YOLOv8+CA注意力机制效果提升。

        CA注意力机制是对现有移动网络设计的一次重大创新。它继承了通道注意力方法的优势,如SENet,能够有效捕捉通道间的依赖关系,并通过独特的位置信息编码,提升了模型对空间细节的敏感度。这一机制通过将2D全局池化分解为两个一维编码过程,使网络能够捕获长距离依赖,增强了特征表示。实验证明,无论是在图像分类、目标检测还是语义分割任务中,CA注意力机制都能够显著提高性能,尤其是在资源受限的移动设备上。简而言之,CA注意力机制提供了一种既高效又有效的方法,使移动网络能够在保持轻量级的同时,实现更精准的视觉识别和分析。

  • 25
    点赞
  • 55
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值