自学历程07-CA注意力机制

引言

        传统的注意力模型,如通道注意力(Squeeze-and-Excitation, SE),尽管在提升网络性能方面取得了显著成效,但它们主要关注于通道级的特征重标定,忽略了空间维度的位置信息。SE机制通过全局平均池化挤压空间维度,导致重要空间细节信息的丢失,特别是在处理具有复杂空间结构的图像时。而CBAM(Convolutional Block Attention Module)虽然试图通过并行的空间和通道注意力模块来增强模型的表征能力,但其处理空间信息的方式相对简单,可能不足以捕捉图像中复杂的空间依赖关系,且增加了模型的计算复杂度。为了解决这一问题,研究者提出了坐标注意力机制(Coordinate Attention, CA),旨在将位置信息融入通道注意力中。坐标注意力机制通过在两个空间维度(高度和宽度)上分别进行注意力的计算,能够更精确地捕捉到图像中的空间分布特征,从而更全面地捕获特征间的依赖关系。

一、CA注意力机制的结构

       CA注意力机制,通过将位置信息嵌入到通道注意力中,来增强移动网络的性能。与通过2D全局池化将特征张量转换为单一特征向量的通道注意力不同,坐标注意力将通道注意力分解为两个1D特征编码过程,分别沿着两个空间方向聚合特征。通过这种方式可以捕捉对视觉任务至关重要的长距离依赖性。CA注意力机制是一种新的并且高效的注意力机制,通过将位置信息嵌入到通道注意力中,使移动网络能够在避免引入显著计算开销的情况下,关注更大的区域。为了减轻2D全局池化造成的位置信息丢失,将通道注意力分解为两个并行的1D特征编码过程,以有效地将空间坐标信息整合到生成的注意力图中

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值