CA注意力机制详解

CA注意力机制详解

CA(Coordinate Attention)注意力机制是一种新的且高效的注意力机制,旨在将位置信息融入通道注意力中,从而增强移动网络的性能。以下是对CA注意力机制的详细解释:

  1. 工作原理

    • CA注意力机制通过在两个空间维度(高度和宽度)上分别进行注意力的计算,能够更精确地捕捉到图像中的空间分布特征,从而更全面地捕获特征间的依赖关系。
    • 它将通道注意力分解为两个1D特征编码过程,分别沿着两个空间方向聚合特征。通过这种方式,可以捕捉对视觉任务至关重要的长距离依赖性。
    • 为了减轻2D全局池化造成的位置信息丢失,CA将通道注意力分解为两个并行的1D特征编码过程,以有效地将空间坐标信息整合到生成的注意力图中。
  2. 实现步骤

    • 输入特征图大小为C×H×W,其中C是通道数,H和W分别是高度和宽度。
    • 对每个通道执行沿宽度W的全局平均池化,得到一个C×H×1的特征图,捕捉高度方向的信息。
    • 对每个通道执行沿高度H的全局平均池化,得到一个C×1×W的特征图,捕捉宽度方向的信息。
    • 将两个池化后的特征图在通道维度上拼接,形成C/r×1×(W
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

浩瀚之水_csdn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值