CA注意力机制详解
CA(Coordinate Attention)注意力机制是一种新的且高效的注意力机制,旨在将位置信息融入通道注意力中,从而增强移动网络的性能。以下是对CA注意力机制的详细解释:
-
工作原理:
- CA注意力机制通过在两个空间维度(高度和宽度)上分别进行注意力的计算,能够更精确地捕捉到图像中的空间分布特征,从而更全面地捕获特征间的依赖关系。
- 它将通道注意力分解为两个1D特征编码过程,分别沿着两个空间方向聚合特征。通过这种方式,可以捕捉对视觉任务至关重要的长距离依赖性。
- 为了减轻2D全局池化造成的位置信息丢失,CA将通道注意力分解为两个并行的1D特征编码过程,以有效地将空间坐标信息整合到生成的注意力图中。
-
实现步骤:
- 输入特征图大小为C×H×W,其中C是通道数,H和W分别是高度和宽度。
- 对每个通道执行沿宽度W的全局平均池化,得到一个C×H×1的特征图,捕捉高度方向的信息。
- 对每个通道执行沿高度H的全局平均池化,得到一个C×1×W的特征图,捕捉宽度方向的信息。
- 将两个池化后的特征图在通道维度上拼接,形成C/r×1×(W