目录
LSTM(Long Short-Term Memory)是一种特殊的循环神经网络(RNN),用于解决长序列中的长期依赖问题。它通过引入门机制,控制信息的流入、保留和输出,从而在避免梯度消失或爆炸的情况下捕获较长序列的依赖关系。以下是LSTM的工作原理和代码实现。
1.LSTM 工作原理
LSTM 通过引入 细胞状态(Cell State) 和 门控单元(Gates) 来控制信息流动,具体包含以下几个部分:
-
遗忘门(Forget Gate)
遗忘门决定了上一个时间步的细胞状态是否需要保留或遗忘。遗忘门通过一个 sigmoid 激活函数(输出在 0 和 1 之间)来控制。输入为当前输入和上一个隐藏状态
:

最低0.47元/天 解锁文章
1万+

被折叠的 条评论
为什么被折叠?



