一、旋转框标注
制作旋转框的标注我这里用到的是rolabelimg,因为之前已经下载了,没下载过的同学可以去自行下载,打开anaconda prompt(anaconda也得下载,使用它管理环境很方便)
激活我们创建的rolabelimg的环境:
conda activate rolabelimg #这里我的rolabelimg是我的环境名
然后跳转到文件所在的本地地址
直接python运行该文件:
python roLabelImg.py
然后就会出现标注界面啦
首先,我们点击选好我们要标注的文件夹;
然后可以选择两种检测框进行标注,上面的是标准框,下面的是旋转框,想要什么类型的检测框点击然后标注就行,因为现在做obb检测,所以我们选择旋转框来进行标注,在标注目标的大概区域画好旋转框,会弹出提示框要求标注该框的标签名
接着进行微调,鼠标选中旋转框的一个角,右键是旋转角度,左键是缩放,标注完是这样的
注意,每标好一张图片就得点击保存一下标注文件,我一般是在图片对应的文件夹里创建一个labels存放这些标签文件
保存生成的标签文件长这样
二、数据转化
接下来就是把标注好的数据转换成YOLO-obb可以识别的标注数据了。因为我借鉴的是遥感卫星的旋转框技术,所以先把原文件转化成DOTA旋转框的xml文件,再转化成DOTA的txt文件,转化代码如下:
# 文件名称 :roxml_to_dota.py
# 功能描述 :把rolabelimg标注的xml文件转换成dota能识别的xml文件,
# 再转换成dota格式的txt文件
# 把旋转框 cx,cy,w,h,angle,或者矩形框cx,cy,w,h,转换成四点坐标x1,y1,x2,y2,x3,y3,x4,y4
import os
import xml.etree.ElementTree as ET
import math
cls_list = ['dlp'] # 一定要改成自己标注时写的标签
def edit_xml(xml_file, dotaxml_file):
"""
修改xml文件
:param xml_file:xml文件的路径
:return:
"""
# dxml_file = open(xml_file,encoding='gbk')
# tree = ET.parse(dxml_file).getroot()
tree = ET.parse(xml_file)
objs = tree.findall('object')
for ix, obj in enumerate(objs):
x0 = ET.Element("x0") # 创建节点
y0 = ET.Element("y0")
x1 = ET.Element("x1")
y1 = ET.Element("y1")
x2 = ET.Element("x2")
y2 = ET.Element("y2")
x3 = ET.Element("x3")
y3 = ET.Element("y3")
# obj_type = obj.find('bndbox')
# type = obj_type.text
# print(xml_file)
if (obj.find('robndbox') == None):
obj_bnd = obj.find('bndbox')
obj_xmin = obj_bnd.find('xmin')
obj_ymin = obj_bnd.find('ymin')
obj_xmax = obj_bnd.find('xmax')
obj_ymax = obj_bnd.find('ymax')
# 以防有负值坐标
xmin = max(float(obj_xmin.text), 0)
ymin = max(float(obj_ymin.text), 0)
xmax = max(float(obj_xmax.text), 0)
ymax = max(float(obj_ymax.text), 0)
obj_bnd.remove(obj_xmin) # 删除节点
obj_bnd.remove(obj_ymin)
obj_bnd.remove(obj_xmax)
obj_bnd.remove(obj_ymax)
x0.text = str(xmin)
y0.text = str(ymax)
x1.text = str(xmax)
y1.text = str(ymax)
x2.text = str(xmax)
y2.text = str(ymin)
x3.text = str(xmin)
y3.text = str(ymin)
else:
obj_bnd = obj.find('robndbox')
obj_bnd.tag = 'bndbox' # 修改节点名
obj_cx = obj_bnd.find('cx')
obj_cy = obj_bnd.find('cy')
obj_w = obj_bnd.find('w')
obj_h = obj_bnd.find('h')
obj_angle = obj_bnd.find('angle')
cx = float(obj_cx.text)
cy = float(obj_cy.text)
w = float(obj_w.text)
h = float(obj_h.text)
angle = float(obj_angle.text)
obj_bnd.remove(obj_cx) # 删除节点
obj_bnd.remove(obj_cy)
obj_bnd.remove(obj_w)
obj_bnd.remove(obj_h)
obj_bnd.remove(obj_angle)
x0.text, y0.text = rotatePoint(cx, cy, cx - w / 2, cy - h / 2, -angle)
x1.text, y1.text = rotatePoint(cx, cy, cx + w / 2, cy - h / 2, -angle)
x2.text, y2.text = rotatePoint(cx, cy, cx + w / 2, cy + h / 2, -angle)
x3.text, y3.text = rotatePoint(cx, cy, cx - w / 2, cy + h / 2, -angle)
# obj.remove(obj_type) # 删除节点
obj_bnd.append(x0) # 新增节点
obj_bnd.append(y0)
obj_bnd.append(x1)
obj_bnd.append(y1)
obj_bnd.append(x2)
obj_bnd.append(y2)
obj_bnd.append(x3)
obj_bnd.append(y3)
tree.write(dotaxml_file, method='xml', encoding='utf-8') # 更新xml文件
# 转换成四点坐标
def rotatePoint(xc, yc, xp, yp, theta):
xoff = xp - xc;
yoff = yp - yc;
cosTheta = math.cos(theta)
sinTheta = math.sin(theta)
pResx = cosTheta * xoff + sinTheta * yoff
pResy = - sinTheta * xoff + cosTheta * yoff
return str(int(xc + pResx)), str(int(yc + pResy))
def totxt(xml_path, out_path):
# 想要生成的txt文件保存的路径,这里可以自己修改
files = os.listdir(xml_path)
i = 0
for file in files:
tree = ET.parse(xml_path + os.sep + file)
root = tree.getroot()
name = file.split('.')[0]
output = out_path + '\\' + name + '.txt'
file = open(output, 'w')
i = i + 1
objs = tree.findall('object')
for obj in objs:
cls = obj.find('name').text
box = obj.find('bndbox')
x0 = int(float(box.find('x0').text))
y0 = int(float(box.find('y0').text))
x1 = int(float(box.find('x1').text))
y1 = int(float(box.find('y1').text))
x2 = int(float(box.find('x2').text))
y2 = int(float(box.find('y2').text))
x3 = int(float(box.find('x3').text))
y3 = int(float(box.find('y3').text))
if x0 < 0:
x0 = 0
if x1 < 0:
x1 = 0
if x2 < 0:
x2 = 0
if x3 < 0:
x3 = 0
if y0 < 0:
y0 = 0
if y1 < 0:
y1 = 0
if y2 < 0:
y2 = 0
if y3 < 0:
y3 = 0
for cls_index, cls_name in enumerate(cls_list):
if cls == cls_name:
file.write("{} {} {} {} {} {} {} {} {} {}\n".format(x0, y0, x1, y1, x2, y2, x3, y3, cls, cls_index))
file.close()
# print(output)
print(i)
if __name__ == '__main__':
# -----**** 第一步:把xml文件统一转换成旋转框的xml文件 ****-----
roxml_path = 'rolabelimg得到的标注文件夹所在路径'
dotaxml_path = '你存放dota的xml文件所期望的路径'
out_path = '你存放dota的txt文件所期望的路径'
filelist = os.listdir(roxml_path)
for file in filelist:
edit_xml(os.path.join(roxml_path, file), os.path.join(dotaxml_path, file))
# -----**** 第二步:把旋转框xml文件转换成txt格式 ****-----
totxt(dotaxml_path, out_path)
可以创建一个data_transfor文件夹这样好管理,里面再创建三个文件夹分别存放org_xml、dota_xml、dota_txt,然后把标注好的标签数据放进org_xml,然后运行代码,打开dota_txt会得到
打开里面的文件查看是否有数据,如果显示这样
那就转化成功了,就可以下一步了。
接着我们得转化成yolo自己的txt格式,可以用到yolo自带的函数convert_dota_to_yolo_obb,YOLO代码下载跟使用,应该有很多大佬早就写了很多详细的了,这里就不过多赘述了
首先我们得搭建符合该函数的datasets,
接着我们运行代码执行convert_dota_to_yolo_obb函数
from ultralytics.data.converter import convert_dota_to_yolo_obb
convert_dota_to_yolo_obb(r'D:\PycharmProjects\ultralytics-obb\dataobb')
报错:
不要慌,这里就是显示我们的标签名跟他函数里的标签名不一样,我们进到该函数里
然后在运行那个函数,没有报错,转化好的yolo-obb格式的文件就在labels的train跟val里面啦,数据就转化好了。格式是这样的
三、YOLO-obb训练
数据准备好了接下来就是训练了,首先,我们去到官网下载obb的预训练权重
这里我专门建了一个weights文件夹专门放权重文件,我们就把下载好的权重放进weights文件夹里。
yolo11-obb.yaml里的nc改成自己要识别的类数量,我这里只做了单类的识别,所以改成1;
我的数据集的配置文件是这样的,按照配置文件自己调好数据集的位置关系,不一定非得这个搭配,您怎么方便管理怎么来,这里的配置文件只需要你在这个路径下有images跟对应的labels就可以,然后设置类名,我这里只有一个类dlp所以就是0: dlp.
所有步骤都添加好了,我们就可以开始训练了,训练代码如下:
from ultralytics import YOLO
def main():
model = YOLO("ultralytics/cfg/models/11/yolo11-obb.yaml").load("weights/yolo11n-obb.pt")
model.train(data="ultralytics/cfg/datasets/coco128.yaml", epochs=200, batch=4, workers=1)
if __name__ == '__main__':
main()
下图这样就显示训练好了,训练结果在runs\obb\train3中
接着剩下的步骤包括预测就跟检测一样了,这里就不多写了。
四、总结
obb就是yolo的一个分支任务,跟detect差不多,就是加了个角度的输出跟loss计算,可以有效减少检测框里的无效区域,对于工业的应用还是很有帮助的。