制作自己的旋转框数据集来训练YOLOv11并使用

一、旋转框标注

制作旋转框的标注我这里用到的是rolabelimg,因为之前已经下载了,没下载过的同学可以去自行下载,打开anaconda prompt(anaconda也得下载,使用它管理环境很方便)

激活我们创建的rolabelimg的环境:

conda activate rolabelimg  #这里我的rolabelimg是我的环境名

然后跳转到文件所在的本地地址

直接python运行该文件:

python roLabelImg.py

然后就会出现标注界面啦

首先,我们点击选好我们要标注的文件夹;

然后可以选择两种检测框进行标注,上面的是标准框,下面的是旋转框,想要什么类型的检测框点击然后标注就行,因为现在做obb检测,所以我们选择旋转框来进行标注,在标注目标的大概区域画好旋转框,会弹出提示框要求标注该框的标签名

接着进行微调,鼠标选中旋转框的一个角,右键是旋转角度,左键是缩放,标注完是这样的

注意,每标好一张图片就得点击保存一下标注文件,我一般是在图片对应的文件夹里创建一个labels存放这些标签文件

保存生成的标签文件长这样

二、数据转化

接下来就是把标注好的数据转换成YOLO-obb可以识别的标注数据了。因为我借鉴的是遥感卫星的旋转框技术,所以先把原文件转化成DOTA旋转框的xml文件,再转化成DOTA的txt文件,转化代码如下:

# 文件名称   :roxml_to_dota.py
# 功能描述   :把rolabelimg标注的xml文件转换成dota能识别的xml文件,
#             再转换成dota格式的txt文件
#            把旋转框 cx,cy,w,h,angle,或者矩形框cx,cy,w,h,转换成四点坐标x1,y1,x2,y2,x3,y3,x4,y4
import os
import xml.etree.ElementTree as ET
import math

cls_list = ['dlp']  # 一定要改成自己标注时写的标签


def edit_xml(xml_file, dotaxml_file):
    """
    修改xml文件
    :param xml_file:xml文件的路径
    :return:
    """

    # dxml_file = open(xml_file,encoding='gbk')
    # tree = ET.parse(dxml_file).getroot()

    tree = ET.parse(xml_file)
    objs = tree.findall('object')
    for ix, obj in enumerate(objs):
        x0 = ET.Element("x0")  # 创建节点
        y0 = ET.Element("y0")
        x1 = ET.Element("x1")
        y1 = ET.Element("y1")
        x2 = ET.Element("x2")
        y2 = ET.Element("y2")
        x3 = ET.Element("x3")
        y3 = ET.Element("y3")
        # obj_type = obj.find('bndbox')
        # type = obj_type.text
        # print(xml_file)

        if (obj.find('robndbox') == None):
            obj_bnd = obj.find('bndbox')
            obj_xmin = obj_bnd.find('xmin')
            obj_ymin = obj_bnd.find('ymin')
            obj_xmax = obj_bnd.find('xmax')
            obj_ymax = obj_bnd.find('ymax')
            # 以防有负值坐标
            xmin = max(float(obj_xmin.text), 0)
            ymin = max(float(obj_ymin.text), 0)
            xmax = max(float(obj_xmax.text), 0)
            ymax = max(float(obj_ymax.text), 0)
            obj_bnd.remove(obj_xmin)  # 删除节点
            obj_bnd.remove(obj_ymin)
            obj_bnd.remove(obj_xmax)
            obj_bnd.remove(obj_ymax)
            x0.text = str(xmin)
            y0.text = str(ymax)
            x1.text = str(xmax)
            y1.text = str(ymax)
            x2.text = str(xmax)
            y2.text = str(ymin)
            x3.text = str(xmin)
            y3.text = str(ymin)
        else:
            obj_bnd = obj.find('robndbox')
            obj_bnd.tag = 'bndbox'  # 修改节点名
            obj_cx = obj_bnd.find('cx')
            obj_cy = obj_bnd.find('cy')
            obj_w = obj_bnd.find('w')
            obj_h = obj_bnd.find('h')
            obj_angle = obj_bnd.find('angle')
            cx = float(obj_cx.text)
            cy = float(obj_cy.text)
            w = float(obj_w.text)
            h = float(obj_h.text)
            angle = float(obj_angle.text)
            obj_bnd.remove(obj_cx)  # 删除节点
            obj_bnd.remove(obj_cy)
            obj_bnd.remove(obj_w)
            obj_bnd.remove(obj_h)
            obj_bnd.remove(obj_angle)

            x0.text, y0.text = rotatePoint(cx, cy, cx - w / 2, cy - h / 2, -angle)
            x1.text, y1.text = rotatePoint(cx, cy, cx + w / 2, cy - h / 2, -angle)
            x2.text, y2.text = rotatePoint(cx, cy, cx + w / 2, cy + h / 2, -angle)
            x3.text, y3.text = rotatePoint(cx, cy, cx - w / 2, cy + h / 2, -angle)

        # obj.remove(obj_type)  # 删除节点
        obj_bnd.append(x0)  # 新增节点
        obj_bnd.append(y0)
        obj_bnd.append(x1)
        obj_bnd.append(y1)
        obj_bnd.append(x2)
        obj_bnd.append(y2)
        obj_bnd.append(x3)
        obj_bnd.append(y3)

        tree.write(dotaxml_file, method='xml', encoding='utf-8')  # 更新xml文件


# 转换成四点坐标
def rotatePoint(xc, yc, xp, yp, theta):
    xoff = xp - xc;
    yoff = yp - yc;
    cosTheta = math.cos(theta)
    sinTheta = math.sin(theta)
    pResx = cosTheta * xoff + sinTheta * yoff
    pResy = - sinTheta * xoff + cosTheta * yoff
    return str(int(xc + pResx)), str(int(yc + pResy))


def totxt(xml_path, out_path):
    # 想要生成的txt文件保存的路径,这里可以自己修改

    files = os.listdir(xml_path)
    i = 0
    for file in files:

        tree = ET.parse(xml_path + os.sep + file)
        root = tree.getroot()

        name = file.split('.')[0]

        output = out_path + '\\' + name + '.txt'
        file = open(output, 'w')
        i = i + 1
        objs = tree.findall('object')
        for obj in objs:
            cls = obj.find('name').text
            box = obj.find('bndbox')
            x0 = int(float(box.find('x0').text))
            y0 = int(float(box.find('y0').text))
            x1 = int(float(box.find('x1').text))
            y1 = int(float(box.find('y1').text))
            x2 = int(float(box.find('x2').text))
            y2 = int(float(box.find('y2').text))
            x3 = int(float(box.find('x3').text))
            y3 = int(float(box.find('y3').text))
            if x0 < 0:
                x0 = 0
            if x1 < 0:
                x1 = 0
            if x2 < 0:
                x2 = 0
            if x3 < 0:
                x3 = 0
            if y0 < 0:
                y0 = 0
            if y1 < 0:
                y1 = 0
            if y2 < 0:
                y2 = 0
            if y3 < 0:
                y3 = 0
            for cls_index, cls_name in enumerate(cls_list):
                if cls == cls_name:
                    file.write("{} {} {} {} {} {} {} {} {} {}\n".format(x0, y0, x1, y1, x2, y2, x3, y3, cls, cls_index))
        file.close()
        # print(output)
        print(i)


if __name__ == '__main__':
    # -----**** 第一步:把xml文件统一转换成旋转框的xml文件 ****-----
    roxml_path = 'rolabelimg得到的标注文件夹所在路径'
    dotaxml_path = '你存放dota的xml文件所期望的路径'
    out_path = '你存放dota的txt文件所期望的路径'
    filelist = os.listdir(roxml_path)
    for file in filelist:
        edit_xml(os.path.join(roxml_path, file), os.path.join(dotaxml_path, file))

    # -----**** 第二步:把旋转框xml文件转换成txt格式 ****-----
    totxt(dotaxml_path, out_path)

可以创建一个data_transfor文件夹这样好管理,里面再创建三个文件夹分别存放org_xml、dota_xml、dota_txt,然后把标注好的标签数据放进org_xml,然后运行代码,打开dota_txt会得到

打开里面的文件查看是否有数据,如果显示这样

那就转化成功了,就可以下一步了。

接着我们得转化成yolo自己的txt格式,可以用到yolo自带的函数convert_dota_to_yolo_obb,YOLO代码下载跟使用,应该有很多大佬早就写了很多详细的了,这里就不过多赘述了

首先我们得搭建符合该函数的datasets,

接着我们运行代码执行convert_dota_to_yolo_obb函数

from ultralytics.data.converter import convert_dota_to_yolo_obb
convert_dota_to_yolo_obb(r'D:\PycharmProjects\ultralytics-obb\dataobb')

报错:

不要慌,这里就是显示我们的标签名跟他函数里的标签名不一样,我们进到该函数里

然后在运行那个函数,没有报错,转化好的yolo-obb格式的文件就在labels的train跟val里面啦,数据就转化好了。格式是这样的

三、YOLO-obb训练

数据准备好了接下来就是训练了,首先,我们去到官网下载obb的预训练权重

这里我专门建了一个weights文件夹专门放权重文件,我们就把下载好的权重放进weights文件夹里。

yolo11-obb.yaml里的nc改成自己要识别的类数量,我这里只做了单类的识别,所以改成1;

我的数据集的配置文件是这样的,按照配置文件自己调好数据集的位置关系,不一定非得这个搭配,您怎么方便管理怎么来,这里的配置文件只需要你在这个路径下有images跟对应的labels就可以,然后设置类名,我这里只有一个类dlp所以就是0: dlp.

所有步骤都添加好了,我们就可以开始训练了,训练代码如下:

from ultralytics import YOLO


def main():
    model = YOLO("ultralytics/cfg/models/11/yolo11-obb.yaml").load("weights/yolo11n-obb.pt")
    model.train(data="ultralytics/cfg/datasets/coco128.yaml", epochs=200, batch=4, workers=1)


if __name__ == '__main__':
    main()

下图这样就显示训练好了,训练结果在runs\obb\train3中

接着剩下的步骤包括预测就跟检测一样了,这里就不多写了。

四、总结

obb就是yolo的一个分支任务,跟detect差不多,就是加了个角度的输出跟loss计算,可以有效减少检测框里的无效区域,对于工业的应用还是很有帮助的。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值