【负荷预测】基于ELM的负荷预测研究(Python代码实现)

                               💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、引言

二、ELM基本原理

三、基于ELM的负荷预测方法

四、应用案例与效果分析

五、结论与展望

📚2 运行结果

🎉3 参考文献

🌈4 Python代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于ELM的负荷预测研究文档


一、引言

电力负荷预测是电力系统运行和规划中的关键环节,对于保障电力系统的稳定性、安全性和经济性具有重要意义。然而,由于电力负荷受多种因素影响,如天气、节假日、经济活动等,其波动性和不确定性给预测工作带来了巨大挑战。近年来,随着人工智能技术的快速发展,极限学习机(Extreme Learning Machine, ELM)作为一种快速有效的神经网络算法,在负荷预测领域展现出了巨大的潜力。本文旨在探讨基于ELM的负荷预测方法,分析其原理、优势及应用效果。

二、ELM基本原理

ELM是一种单层前馈神经网络,其核心思想在于随机初始化输入层到隐含层的连接权重,并通过求解一个线性方程组来确定输出层的权重。ELM具有以下几个显著特点:

  1. 快速训练:由于ELM的输入层到隐含层的权重是随机初始化的,并且不需要在训练过程中进行调整,因此其训练速度远快于传统的神经网络算法。
  2. 良好的泛化性能:ELM通过求解一个线性方程组来确定输出层的权重,这有助于避免过拟合问题,从而提高模型的泛化性能。
  3. 简单易用:ELM的模型结构相对简单,参数设置较少,易于实现和应用。

三、基于ELM的负荷预测方法

基于ELM的负荷预测方法主要包括以下几个步骤:

  1. 数据预处理
    • 收集历史负荷数据及相关影响因素(如天气、节假日等)。
    • 对数据进行清洗,去除异常值和缺失值。
    • 对数据进行归一化处理,以消除不同量纲对预测结果的影响。
  2. 特征选择
    • 根据负荷预测的需求和数据的可用性,选择合适的特征作为ELM神经网络的输入。
    • 常见的特征包括历史负荷值、温度、湿度、节假日标识等。
  3. 模型构建
    • 根据选定的特征数量和预测目标,构建ELM神经网络模型。
    • 确定输入层、隐含层和输出层的节点数。
    • 随机初始化输入层到隐含层的连接权重。
  4. 模型训练
    • 使用预处理后的数据对ELM神经网络进行训练。
    • 通过求解线性方程组来确定输出层的权重。
    • 可以采用交叉验证等方法来评估模型的性能,并进行必要的调整和优化。
  5. 预测与评估
    • 利用训练好的ELM神经网络模型进行负荷预测。
    • 使用适当的评估指标(如均方误差MSE、均方根误差RMSE、准确率等)对预测结果进行评估。

四、应用案例与效果分析

已有研究表明,基于ELM的负荷预测方法在实际应用中取得了显著的效果。例如,某地区电网采用ELM算法进行短期负荷预测,通过考虑历史负荷数据、天气因素等多种影响因素,实现了对未来几小时或一天内负荷的精确预测。实验结果表明,该方法的预测精度较高,且训练速度远快于传统方法,为电网的调度和运行提供了有力的支持。

五、结论与展望

基于ELM的负荷预测方法以其快速训练和良好泛化性能的优势,在电力系统负荷预测领域展现出了广阔的应用前景。未来,随着数据量的不断增加和计算能力的提升,ELM算法在负荷预测中的性能将得到进一步提升。同时,结合其他先进的人工智能技术(如深度学习、强化学习等),可以构建更加复杂、高效的负荷预测模型,为电力系统的优化运行和智能调度提供更加有力的支持。

需要注意的是,虽然ELM算法在负荷预测中表现出色,但在实际应用中仍需考虑数据的完整性和准确性、模型参数的优化以及预测结果的解释性等问题。因此,未来的研究应进一步关注这些问题,以推动基于ELM的负荷预测方法在实际应用中的不断完善和发展。

📚2 运行结果

部分代码:

# 初始化存储各个评估指标的字典。
table = PrettyTable(['测试集指标','MSE', 'RMSE', 'MAE', 'MAPE','R2'])
for i in range(n_out):
    # 遍历每一个预测步长。每一列代表一步预测,现在是在求每步预测的指标
    actual = [float(row[i]) for row in Ytest]  #一列列提取
    # 从测试集中提取实际值。
    predicted = [float(row[i]) for row in predicted_data]
    # 从预测结果中提取预测值。
    mse = mean_squared_error(actual, predicted)
    # 计算均方误差(MSE)。
    mse_dic.append(mse)
    rmse = sqrt(mean_squared_error(actual, predicted))
    # 计算均方根误差(RMSE)。
    rmse_dic.append(rmse)
    mae = mean_absolute_error(actual, predicted)
    # 计算平均绝对误差(MAE)。
    mae_dic.append(mae)
    MApe = mape(actual, predicted)
    # 计算平均绝对百分比误差(MAPE)。
    mape_dic.append(MApe)
    r2 = r2_score(actual, predicted)
    # 计算R平方值(R2)。
    r2_dic.append(r2)
    if n_out == 1:
        strr = '预测结果指标:'
    else:
        strr = '第'+ str(i + 1)+'步预测结果指标:'
    table.add_row([strr, mse, rmse, mae, str(MApe)+'%', str(r2*100)+'%'])

return mse_dic,rmse_dic, mae_dic, mape_dic, r2_dic, table
# 返回包含所有评估指标的字典。

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]张惟东.基于CNN-LSTM-Attention的短期电力负荷预测研究[D].兰州理工大学,2022.

[2]姚芳,汤俊豪,陈盛华,等.基于ISSA-CNN-GRU模型的电动汽车充电负荷预测方法[J].电力系统保护与控制, 2023, 51(16):158-167.

[3]姚芳,汤俊豪,陈盛华,等.基于ISSA-CNN-GRU模型的电动汽车充电负荷预测方法[J].电力系统保护与控制, 2023, 51(16):158-167.

[4]姚程文、杨苹、刘泽健.基于CNN-GRU混合神经网络的负荷预测方法[J].电网技术, 2020, 44(9):8.DOI:10.13335/j.1000-3673.pst.2019.2058.

[5]谢志坚.基于CNN-BAS-GRU模型的短期电力负荷预测研究[J].现代计算机, 2023, 29(21):15-20.

[6]杨超.基于ISSA优化CNN-BiGRU-Self Attention的短期电力负荷预测研究[D].陕西理工大学,2024. 

🌈4 Python代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值