本文以一个BUCK-BOOST电路为例展示整个建模过程,电路如图1所示
图1
图2
当开关位于位置1时,电路如图2(a)所示,此时
当开关位于位置2时,电路如图2(b)所示,此时
1计算电感和电容波形的平均值关系
我们知道电感的电流和电压瞬时值满足
实际上,电感的电流和电压平均值也满足这个关系,推导过程如下
同样的,也可以推导出电容的电压和电流平均值存在如下关系
接下来,我们需要通过平均电感电压和电容电流波形来计算上述两个方程的右侧。
2关于平均近似的讨论
平均算子的定义如下
在建模过程中,平均的方法能够去除开关频率处的波形分量及其谐波,同时保留波形低频分量的幅值和相位 。
3计算电感电压和小纹波近似模型
电感电压和电流波形如图3所示。
如图3
在某段开关区间内,平均电感电压为
即
4计算电容器的波形的平均值
当开关位于位置1时,有
当开关位于位置2时,有
在一个开关周期内,电容电流的平均值是
5输入电流的平均值
输入电流在第一个子区间内等于电感电流,在第二个子区间内等于0.
因此输入电流平均值为
6扰动与线性化
BUCK-BOOST电路的平均方程如下
这些方程是非线性的,因为它们包含时变量的乘法,因此我们需要对方程进行线性化。假设我们以稳态或静态方式驱动变换器,占空比d(t) = D,静态输入电压vg(t) = vg,在任何瞬态平息后,电容电压,电感电流,输入电流都将达到稳定值。
为了在静态工作点(I, V)上构建一个小信号交流模型,假设输入电压vg(t)和占空比d(t)等于一些给定的静态值vg和d,加上一些叠加的小交流变化值lvg (t)和d(t),可以得到
同理,可以得到
并且
接下来将非线性方程线性化
直流项:这些项只包含直流量。
一阶交流电项:每一项都包含一个交流电量,通常乘以一个常数,如直流项。这些项是ac变化的线性函数。
二阶ac项:这些项包含ac量的乘积。因此它们是非线性的,因为它们涉及时变信号的乘法。
因为I是常数,其导数为0,所以常数项为零,二次分量数值较小,可以忽略。可得
电容的方程用同样的方法处理,可得
输入电流的方程用同样的方法处理,可得
7建立小信号电路等效模型
上一节中的小信号等效方程如下
可以建立如下模型,如图4所示
图4
8几种常见的转换器的小信号模型
图5 BUCK
图6 BOOST
图7 BUCK-BOOST