1.LCL滤波器
传统三相逆变器使用的是L型滤波器,其设计简单,但也存在着一些问题,如在同样的滤波效果下,L型滤波器电感尺寸、重量较大,成本较高,并且随着电感值的增大,其上的电压降增加比较明显,会出现过调制。相比之下,LCL 型滤波器对高频谐波衰减能力更好,所需的无源器件尺寸更小。
1.1LCL滤波器模型
LCL滤波器包含逆变器侧电感Lf,滤波电容Cf,阻尼电阻Rd,电网侧电感Lg,如图1所示,右侧为LCL滤波器在频域范围满足的电路公式。
图1.1
1.2LCL滤波器传递函数(vs-ig)
其传递函数方框图如图2所示,VS为输入量,ig为输出量,其他为中间变量或者扰动。
图1.2
可以推导出其传递函数为
在低频下,sCf非常下,可以忽略掉,因此可以得到等效低频传递函数,Rf和Rg分别为两个电感的寄生电阻。此时LCL滤波器等效为一个L滤波器。
在高频下,s非常大,因此可以得到等效高频传递函数。可以看出在高频时,LCL滤波器相位时-180°,以40dB/dec的速率衰减。
L型和LCL型滤波器的伯德图如图3所示,可以看出在低频时二者表现时近似的,但是LCL对高频分量衰减性能更好。
图1.3
1.3LCL滤波器传递函数(is-ig)
is-ig的传递函数代表了滤波器对于电流纹波的衰减能力。其传递函数为
在高频下,忽略电感的寄生电阻,传递函数可以简化为
其伯德图如图4所示,在低频时,其增益为1,在高频时,以40dB/dec的速率衰减。
图1.4
1.4LCL滤波器参数选取
LCL滤波器各元件对应物理意义如下:
Lf:逆变器侧电流纹波
Cf:额定工况下的无功功率吸收
Rd:在谐振频率下的阻尼效果
Cg:从逆变器侧到电网侧的高频分量衰减
Lf的选取:
Lf计算公式如下,其中vL,max为Vdc/2。
Cf的选取:
为了保证电路功率因数接近1,Cf计算公式如下,可以C取最大值的一半,后续根据实际效果不断改变电容值。
Lg的选取:
设定Lg=rLf,可以得到衰减函数:
衰减效果如图5所示,通常可取r为0.3~1
图1.5
LCL滤波器的谐振频率为
这个频率需要满足,频率过低会对交流电产生影响,频率过高对谐波的衰减效果不足。
阻尼电阻的选取:
阻尼电阻是为了给滤波器提供阻尼,通常可以设计为电容在谐振频率下阻抗的三分之一,其计算公式如下:
2.三相两电平逆变器电路的双闭环dq解耦控制
2.1三相两电平逆变器电路方程
图2.1
三相两电平逆变器电路(LC滤波)模型如图2.1所示,在实际电路中电感感抗比电阻r大很多,可以把r忽略掉。根据KVL可以列出下列电路方程,其中wLI来自于q轴和d轴的耦合。
KVL框图如图2.2所示
图2.2
根据KCL可以列出下列方程
把KVL和KCL和并在一起,可以得到逆变器传递框图如图2.3所示
图2.3
在这个模型中,d轴和q轴相互耦合,使用PID控制时,不便于单独控制d轴或者q轴,因此需要对其进行解耦。
2.2三相两电平逆变器电路方程解耦
电压环和电流环通常采用PI控制,而不采用微分控制,因为微分控制会放大其中的高频分量。实际的kpwm可以取1(大致是调制出来的PWM和相电压时归一化关系,具体我还没搞明白)。可通下列变换对电流环进行解耦:
解耦后的传递框图如图2.4所示
图2.4
电压外环也可通过类似变换解耦
电压环和电流环均解耦后的框图如图2.5所示。需注意,在传递方框图中只采用了电压前馈,没有采用电流前馈,这是因为如果采用电流前馈,除了测量电感电流外,还需要额外测量输出电流,会增加成本,因此实际应用中可以省去电流前馈。
图2.5
3.基于simulink的三相并网逆变器仿真
搭建LCL型滤波器三相并网逆变器双闭环系统如图3.1所示:
图3.1
模型参数如图3.2所示:
图3.2
其中各个子系统如下:
采样部分如图3.3所示,信号经过了一个临界保持器
图3.3
驱动部分如图3.4所示,驱动信号幅值为1,因此进行了15倍的增益,让其达到IGBT的阈值电压。
图3.4
控制部分采用的时双电流闭环控制,外环为输出电流,内环为逆变器侧电感电流,如图3.5所示
图3.5
调制部分采用的时SPWM调制,如图3.6所示
图3.6
仿真结果如3.7所示,蓝色为电网电压、黄色为输出电流
图3.7
输出电流的FFT分析如图3.8所示:
图3.8