状态空间模型

1.现代控制理论

        现代控制系统不断向着复杂的方向发展,可能是具有多输入多输出的时变系统。因此产生了一种对复杂控制系统进行分析设计的新方法,即现代控制理论。现代控制理论是建立在状态这个概念上的,状态并不是一个新的概念,它在很久之前就存在经典动力学领域。

2.现代控制理论和传统控制理论的比较

        现代控制理论与传统控制理论形成鲜明的对照,前者适用于多输入、多输出系统,系统可以是线性的或非线性的,也可以是定常的或时变的;后者则仅仅适用于线性、定常、单输入、单输出系统。此外,现代控制理论本质上是一种时域方法和频域方法(在一定情况下,例如H无穷大控制),而传统控制理论则是一种复频域方法。在介绍现代控制理论之前,我们需要定义状态、状态变量、状态向量和状态空间。

3.状态

        动态系统的状态是系统的最小一组变量(称为状态变量),只要知道了在 t=t0​ 时的这样一组变量和 t⩾t0​ 时的输入量,就能够完全确定系统在任何时间 t⩾t0时的行为。状态这个概念不止限于在物理系统中应用。它还适用于生物学系统、经济学系统、社会学系统和其他一些系统。

4.状态变量

        动态系统的状态变量是确定动态系统的最小一组变量。如果至少需要 n 个变量 x1,x2,⋯ ,xn才能完全描述动态系统的行为(即一旦给出 t⩾t0时的输入量,并且给定 t=t0时的初始状态,就可以完全确定系统的未来状态),则这 n 个变量就是一组状态变量。

        状态变量未必是物理上可测量的或可观察的量。某些不代表物理量的变量,它们既不可测量,又不可观察,但是却可以被选为状态变量。这种在选择状态变量方面的自由性,是状态空间法的一个优点。但是从实用角度来讲,如果有可能,选择容易测量的量作为状态变量毕竟比较方便,因为最佳控制律需要反馈所有具有适当加权的状态变量。

5.状态向量

        如果完全描述一个给定系统的行为需要 n 个状态变量,那么这 n 个状态变量可以看成向量 x 的 n 个分量,该向量就称为状态向量。

6.状态方程

        在状态空间的分析中设计三种变量,分别是输入变量、输出变量、状态变量。 动态系统必定包含着记忆元件,它在 t⩾t1时能够记忆输入量的值。因为在连续时间控制系统中,积分器作为记忆装置,所以这些积分器的输出量可以看成变量,这些变量确定了动态系统的内部状态。因此,积分器的输出量可以作为状态变量,能够完全确定系统动态特性的状态变量数目,等于系统中包含的积分器数目。

        假设多输入、多输出系统中包含 n 个积分器,又设系统中有 r 个输入量 u1(t),u2(t),⋯ ,ur(t)和 m 个输出量 y1(t),y2(t),⋯ ,ym(t)。定义积分器的 n 个输出量为状态变量 x1(t),x2(t),⋯ ,xn(t)x。于是可以用下列方程描述系统:

系统的输出量可以表示为

进行如下定义之后

可以得到状态方程和输出方程

 将两个方程围绕运行状态进行线性化得到

 A为状态矩阵,B为输入矩阵,C为输出矩阵,D为直接传输矩阵。两个方程的方框图可以表示为

7.传递函数与状态空间方程之间的关系 

假设我们要研究的系统的传递函数为

该系统可以用下列方程表示

将其进行拉普拉斯变换后可得

 因为初始条件为0是传递函数的定义之一,因此x(0)=0,则上述状态方程可以化简为

 把X(s)带入输出方程,可以得到

 则传递函数为

可变换为

 可以看出传递函数特征多项式为

8.传递矩阵 

 假设系统有 r个输入量 u1,u2,⋯ ,ur 和 m个输出量 y1,y2,⋯ ,ym​, 定义

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

晨星️

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值