1.5 多元函数积分学

第一章 数学分析

全文均为手敲,如果发现有误,请于评论区交流讨论留言,作者会及时修改

1.5 多元函数积分学

  1. 二重积分的中值定理

    f ( x , y ) f(x,y) f(x,y)在有界闭区域 D D D上连续,区域 D D D的面积为 σ \sigma σ,则

    ∃ ( ξ , η ) ∈ D , s . t . ∬ D f ( x , y ) d σ = f ( ξ , η ) σ \exist(\xi,\eta)\in D,s.t.\iint\limits_Df(x,y)d\sigma=f(\xi,\eta)\sigma (ξ,η)D,s.t.Df(x,y)dσ=f(ξ,η)σ

  2. 二重积分的一般换元

    ∬ D x y f ( x , y ) d x d y = ∬ D u v f ( x ( u , v ) , y ( u , v ) ) ∣ J ∣ d u d v \iint\limits_{D_{xy}}f(x,y)dxdy=\iint\limits_{D_{uv}}f(x(u,v),y(u,v))|J|dudv Dxyf(x,y)dxdy=Duvf(x(u,v),y(u,v))Jdudv

    其中 J a c o b i Jacobi Jacobi矩阵的行列式 J = ∣ ∂ ( x , y ) ∂ ( u , v ) ∣ = ∣ x u x v y u y v ∣ = ∣ u x u y v x v y ∣ − 1 J=|\frac{\partial(x,y)}{\partial(u,v)}|=\begin{vmatrix}x_u&x_v\\y_u&y_v\end{vmatrix}=\begin{vmatrix}u_x&u_y\\v_x&v_y\end{vmatrix}^{-1} J=(u,v)(x,y)=xuyuxvyv=uxvxuyvy1

  3. 二重积分的极坐标变换

    { x = r cos ⁡ θ y = r sin ⁡ θ ⇒ J = ∣ ∂ ( x , y ) ∂ ( r , θ ) ∣ = r \begin{cases}x=r\cos\theta\\y=r\sin\theta\end{cases}\Rightarrow J=|\frac{\partial(x,y)}{\partial(r,\theta)}|=r {x=rcosθy=rsinθJ=(r,θ)(x,y)=r

    更一般地

    { x = x 0 + a r cos ⁡ θ y = y 0 + b r sin ⁡ θ ⇒ J = ∣ ∂ ( x , y ) ∂ ( r , θ ) ∣ = a b r \begin{cases}x=x_0+ar\cos\theta\\y=y_0+br\sin\theta\end{cases}\Rightarrow J=|\frac{\partial(x,y)}{\partial(r,\theta)}|=abr {x=x0+arcosθy=y0+brsinθJ=(r,θ)(x,y)=abr

  4. 三重积分的一般换元

    ∭ Ω x y z f ( x , y , z ) d x d y d z = ∭ Ω u v w f ( x , y , z ) ∣ J ∣ d u d v d w \iiint\limits_{\Omega_{xyz}}f(x,y,z)dxdydz=\iiint\limits_{\Omega_{uvw}}f(x,y,z)|J|dudvdw Ωxyzf(x,y,z)dxdydz=Ωuvwf(x,y,z)Jdudvdw

    其中 J a c o b i Jacobi Jacobi矩阵的行列式 J = ∣ ∂ ( x , y , z ) ∂ ( u , v , w ) ∣ = ∣ x u x v x w y u y v y w z u z v z w ∣ = ∣ u x u y u z v x v y v z w x w y w z ∣ − 1 J=|\frac{\partial(x,y,z)}{\partial(u,v,w)}|=\begin{vmatrix}x_u&x_v&x_w\\y_u&y_v&y_w\\z_u&z_v&z_w\end{vmatrix}=\begin{vmatrix}u_x&u_y&u_z\\v_x&v_y&v_z\\w_x&w_y&w_z\end{vmatrix}^{-1} J=(u,v,w)(x,y,z)=xuyuzuxvyvzvxwywzw=uxvxwxuyvywyuzvzwz1

  5. 三重积分的柱坐标变换

    { x = r cos ⁡ θ y = r sin ⁡ θ z = z ⇒ J = ∣ ∂ ( x , y , z ) ∂ ( r , θ , z ) ∣ = r \begin{cases}x=r\cos\theta\\y=r\sin\theta\\z=z\end{cases}\Rightarrow J=|\frac{\partial(x,y,z)}{\partial(r,\theta,z)}|=r x=rcosθy=rsinθz=zJ=(r,θ,z)(x,y,z)=r

    更一般地

    { x = x 0 + a r cos ⁡ θ y = y 0 + b r sin ⁡ θ z = z 0 + z ⇒ J = ∣ ∂ ( x , y , z ) ∂ ( r , θ , z ) ∣ = a b r \begin{cases}x=x_0+ar\cos\theta\\y=y_0+br\sin\theta\\z=z_0+z\end{cases}\Rightarrow J=|\frac{\partial(x,y,z)}{\partial(r,\theta,z)}|=abr x=x0+arcosθy=y0+brsinθz=z0+zJ=(r,θ,z)(x,y,z)=abr

  6. 三重积分的球坐标变换

    { x = r sin ⁡ φ cos ⁡ θ y = r sin ⁡ φ sin ⁡ θ z = r cos ⁡ φ ⇒ J = ∣ ∂ ( x , y , z ) ∂ ( r , θ , φ ) ∣ = r 2 sin ⁡ φ \begin{cases}x=r\sin\varphi\cos\theta\\y=r\sin\varphi\sin\theta\\z=r\cos\varphi\end{cases}\Rightarrow J=|\frac{\partial(x,y,z)}{\partial(r,\theta,\varphi)}|=r^2\sin\varphi x=rsinφcosθy=rsinφsinθz=rcosφJ=(r,θ,φ)(x,y,z)=r2sinφ

    更一般地

    { x = x 0 + a r sin ⁡ φ cos ⁡ θ y = y 0 + b r sin ⁡ φ sin ⁡ θ z = z 0 + c r cos ⁡ φ ⇒ J = ∣ ∂ ( x , y , z ) ∂ ( r , θ , φ ) ∣ = a b c r 2 sin ⁡ φ \begin{cases}x=x_0+ar\sin\varphi\cos\theta\\y=y_0+br\sin\varphi\sin\theta\\z=z_0+cr\cos\varphi\end{cases}\Rightarrow J=|\frac{\partial(x,y,z)}{\partial(r,\theta,\varphi)}|=abcr^2\sin\varphi x=x0+arsinφcosθy=y0+brsinφsinθz=z0+crcosφJ=(r,θ,φ)(x,y,z)=abcr2sinφ

  7. 空间曲面的面积

    z = f ( x , y ) z=f(x,y) z=f(x,y)在区域 D D D上的曲面面积为

    S = ∬ S d S = ∬ D 1 + z x 2 + z y 2 d x d y S=\iint\limits_SdS=\iint\limits_D\sqrt{1+z_x^2+z_y^2}dxdy S=SdS=D1+zx2+zy2 dxdy

  8. 质心坐标

    以二维为例

    x ‾ = ∬ x ρ ( x , y ) d x d y ∬ ρ ( x , y ) d x d y , y ‾ = ∬ y ρ ( x , y ) d x d y ∬ ρ ( x , y ) d x d y \overline x=\frac{\iint x\rho(x,y)dxdy}{\iint\rho(x,y)dxdy},\overline y=\frac{\iint y\rho(x,y)dxdy}{\iint\rho(x,y)dxdy} x=ρ(x,y)dxdyxρ(x,y)dxdy,y=ρ(x,y)dxdyyρ(x,y)dxdy

  9. 转动惯量

    J l = ∬ D r 2 ( x , y ) ρ ( x , y ) d x d y J_l=\iint\limits_Dr^2(x,y)\rho(x,y)dxdy Jl=Dr2(x,y)ρ(x,y)dxdy

  10. 万有引力分量

    F i = ∭ Ω m ρ ( x , y , z ) ( i − i 0 ) r 3 d x d y d z , i ∈ { x , y , z } F_i=\iiint\limits_\Omega\frac{m\rho(x,y,z)(i-i_0)}{r^3}dxdydz,i\in\{x,y,z\} Fi=Ωr3mρ(x,y,z)(ii0)dxdydz,i{x,y,z}

  11. 第一类曲线积分

    设曲线 L : { x = x ( t ) y = y ( t ) , t ∈ [ α , β ] L:\begin{cases}x=x(t)\\y=y(t)\end{cases},t\in[\alpha,\beta] L:{x=x(t)y=y(t),t[α,β],则 f ( x , y ) f(x,y) f(x,y)沿 L L L的积分为

    ∫ L f ( x , y ) d s = ∫ α β f ( x ( t ) , y ( t ) ) x t 2 + y t 2 d t \int\limits_Lf(x,y)ds=\int_\alpha^\beta f(x(t),y(t))\sqrt{x_t^2+y_t^2}dt Lf(x,y)ds=αβf(x(t),y(t))xt2+yt2 dt

  12. 第二类曲线积分

    设曲线 L : { x = x ( t ) y = y ( t ) , t ∈ [ α , β ] L:\begin{cases}x=x(t)\\y=y(t)\end{cases},t\in[\alpha,\beta] L:{x=x(t)y=y(t),t[α,β],则 F ⃗ ( x , y ) \vec F(x,y) F (x,y)沿 L L L的积分为

    ∫ L F ⃗ ( x , y ) d s ⃗ = ∫ L P ( x , y ) d x + Q ( x , y ) d y \int\limits_L\vec F(x,y)d\vec s=\int\limits_LP(x,y)dx+Q(x,y)dy LF (x,y)ds =LP(x,y)dx+Q(x,y)dy

    进一步

    ∫ L P ( x , y ) d x + Q ( x , y ) d y = ∫ α β [ P ( x ( t ) , y ( t ) ) x ′ ( t ) + Q ( x ( t ) , y ( t ) ) y ′ ( t ) ] d t \int\limits_LP(x,y)dx+Q(x,y)dy=\int_\alpha^\beta [P(x(t),y(t))x'(t)+Q(x(t),y(t))y'(t)]dt LP(x,y)dx+Q(x,y)dy=αβ[P(x(t),y(t))x(t)+Q(x(t),y(t))y(t)]dt

  13. 第一类曲线积分与第二类曲线积分互相转化

    若 ( cos ⁡ α , cos ⁡ β ) 为 沿 曲 线 方 向 的 单 位 切 向 量 , 则 { d x = d s cos ⁡ α d y = d s cos ⁡ β 若(\cos\alpha,\cos\beta)为沿曲线方向的单位切向量,则\begin{cases}dx=ds\cos\alpha\\dy=ds\cos\beta\end{cases} (cosα,cosβ)沿线,{dx=dscosαdy=dscosβ

  14. G r e e n Green Green公式

    设区域 D D D是由分段光滑的曲线 L L L围成,且 P ( x , y ) , Q ( x , y ) P(x,y),Q(x,y) P(x,y),Q(x,y) D D D上具有一阶连续偏导,则

    ∬ D ( ∂ Q ∂ x − ∂ P ∂ y ) d x d y = ∮ L P d x + Q d y \iint\limits_D(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y})dxdy=\oint\limits_LPdx+Qdy D(xQyP)dxdy=LPdx+Qdy

    特别地,闭合曲线 L L L围成的面积为

    S = ∬ D d x d y = ∮ L x d y = 1 2 ∮ L x d y − y d x S=\iint\limits_Ddxdy=\oint\limits_Lxdy=\frac 12\oint\limits_Lxdy-ydx S=Ddxdy=Lxdy=21Lxdyydx

  15. 平面曲线积分与路径无关

    设 D 是 单 连 通 闭 区 域 , 且 P , Q 在 D 上 具 有 一 阶 连 续 偏 导 数 , 则 在 区 域 D 内 以 下 四 个 条 件 等 价 : ( 1 ) ∫ L P d x + Q d y 积 分 值 与 路 径 无 关 ( 2 ) 任 意 一 条 光 滑 闭 曲 线 L , 有 ∮ L P d x + Q d y = 0 ( 3 ) 存 在 可 微 函 数 u ( x , y ) , 使 得 d u = P d x + Q d y ( 4 ) ∂ Q ∂ x = ∂ P ∂ y \begin{aligned} &设D是单连通闭区域,且P,Q在D上具有一阶连续偏导数,则在区域D内以下四个条件等价:\\ &(1)\int\limits_LPdx+Qdy积分值与路径无关\\ &(2)任意一条光滑闭曲线L,有\oint\limits_LPdx+Qdy=0\\ &(3)存在可微函数u(x,y),使得du=Pdx+Qdy\\ &(4)\frac{\partial Q}{\partial x}=\frac{\partial P}{\partial y} \end{aligned} D,P,QDD:(1)LPdx+Qdy(2)线L,LPdx+Qdy=0(3)u(x,y),使du=Pdx+Qdy(4)xQ=yP

  16. 第一类曲面积分

    设曲面 Σ : z = z ( x , y ) \Sigma:z=z(x,y) Σ:z=z(x,y),函数 f ( x , y , z ) f(x,y,z) f(x,y,z)在曲面 Σ \Sigma Σ上的积分为

    ∬ Σ f ( x , y , z ) d S = ∬ D x y f ( x , y , z ( x , y ) ) 1 + z x 2 + z y 2 d x d y \iint\limits_\Sigma f(x,y,z)dS=\iint\limits_{D_{xy}}f(x,y,z(x,y))\sqrt{1+z_x^2+z_y^2}dxdy Σf(x,y,z)dS=Dxyf(x,y,z(x,y))1+zx2+zy2 dxdy

  17. 第一类曲面积分换元公式

    若曲面 Σ \Sigma Σ以参数形式给出或换元为参数形式 { x = x ( u , v ) y = y ( u , v ) z = z ( u , v ) \begin{cases}x=x(u,v)\\y=y(u,v)\\z=z(u,v)\end{cases} x=x(u,v)y=y(u,v)z=z(u,v),则 f ( x , y , z ) f(x,y,z) f(x,y,z)在曲面 Σ \Sigma Σ上的积分为

    ∬ Σ f ( x , y , z ) d S = ∬ D u v f ( x , y , z ) E G − F 2 d u d v \iint\limits_\Sigma f(x,y,z)dS=\iint\limits_{D_{uv}}f(x,y,z)\sqrt{EG-F^2}dudv Σf(x,y,z)dS=Duvf(x,y,z)EGF2 dudv

    其中 E , F , G E,F,G E,F,G称为曲面 Σ \Sigma Σ的第一基本量: { E = x u 2 + y u 2 + z u 2 F = x u x v + y u y v + z u z v G = x v 2 + y v 2 + z v 2 \begin{cases}E=x_u^2+y_u^2+z_u^2\\F=x_ux_v+y_uy_v+z_uz_v\\G=x_v^2+y_v^2+z_v^2\end{cases} E=xu2+yu2+zu2F=xuxv+yuyv+zuzvG=xv2+yv2+zv2

  18. 第二类曲面积分

    曲面向上、向右、向前时为正方向

    ∬ L F ⃗ ( x , y , z ) d S ⃗ = ∫ L P d y d z + Q d z d x + R d x d y \iint\limits_L\vec F(x,y,z)d\vec S=\int\limits_LPdydz+Qdzdx+Rdxdy LF (x,y,z)dS =LPdydz+Qdzdx+Rdxdy

  19. 第一类曲面积分与第二类曲面积分互相转化

    若 ( cos ⁡ α , cos ⁡ β , cos ⁡ γ ) 为 曲 面 方 向 的 单 位 法 向 量 , 则 { d y d z = d S cos ⁡ α d z d x = d S cos ⁡ β d x d y = d S cos ⁡ γ 若(\cos\alpha,\cos\beta,\cos\gamma)为曲面方向的单位法向量,则\begin{cases}dydz=dS\cos\alpha\\dzdx=dS\cos\beta\\dxdy=dS\cos\gamma\end{cases} (cosα,cosβ,cosγ),dydz=dScosαdzdx=dScosβdxdy=dScosγ

    以上关系也用于同一积分在不同投影曲面之间的相互转化

  20. G a u s s Gauss Gauss公式

    设函数 P , Q , R P,Q,R P,Q,R在封闭区域 Ω \Omega Ω内有一阶连续偏导, Σ \Sigma Σ为区域 Ω \Omega Ω的边界,并取外侧,则

    ∭ Ω ( ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z ) d x d y d z = ∯ Σ P d y d z + Q d z d x + R d x d y \iiint\limits_\Omega(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z})dxdydz=\oiint\limits_{\Sigma} Pdydz+Qdzdx+Rdxdy Ω(xP+yQ+zR)dxdydz=Σ Pdydz+Qdzdx+Rdxdy

  21. S t o k e s Stokes Stokes公式

    设函数 P , Q , R P,Q,R P,Q,R在曲面 Σ \Sigma Σ内有一阶连续偏导, Γ \Gamma Γ为曲面 Σ \Sigma Σ的正向边界,则

    KaTeX parse error: Expected group after '_' at position 6: \iint_̲\limits\Sigma(\…

    或者记为行列式形式

    KaTeX parse error: Expected group after '_' at position 6: \iint_̲\limits\Sigma\b…

  22. 空间曲线积分与路径无关

    设 Ω 是 单 连 通 闭 区 域 , 且 P , Q , R 在 Ω 上 具 有 一 阶 连 续 偏 导 数 , 则 在 区 域 Ω 内 以 下 四 个 条 件 等 价 : ( 1 ) ∫ L P d x + Q d y + R d z 积 分 值 与 路 径 无 关 ( 2 ) 任 意 一 条 光 滑 闭 曲 线 L , 有 ∮ L P d x + Q d y + R d z = 0 ( 3 ) 存 在 可 微 函 数 u ( x , y , z ) , 使 得 d u = P d x + Q d y + R d z ( 4 ) ∂ Q ∂ x = ∂ P ∂ y , ∂ R ∂ y = ∂ Q ∂ z , ∂ P ∂ z = ∂ R ∂ x \begin{aligned} &设\Omega是单连通闭区域,且P,Q,R在\Omega上具有一阶连续偏导数,则在区域\Omega内以下四个条件等价:\\ &(1)\int\limits_LPdx+Qdy+Rdz积分值与路径无关\\ &(2)任意一条光滑闭曲线L,有\oint\limits_LPdx+Qdy+Rdz=0\\ &(3)存在可微函数u(x,y,z),使得du=Pdx+Qdy+Rdz\\ &(4)\frac{\partial Q}{\partial x}=\frac{\partial P}{\partial y},\frac{\partial R}{\partial y}=\frac{\partial Q}{\partial z},\frac{\partial P}{\partial z}=\frac{\partial R}{\partial x} \end{aligned} Ω,P,Q,RΩΩ:(1)LPdx+Qdy+Rdz(2)线L,LPdx+Qdy+Rdz=0(3)u(x,y,z),使du=Pdx+Qdy+Rdz(4)xQ=yP,yR=zQ,zP=xR

  23. 场论初步

    H a m i l t o n Hamilton Hamilton算子

    ∇ = ( ∂ ∂ x , ∂ ∂ y , ∂ ∂ z ) \nabla=(\frac{\partial}{\partial x},\frac{\partial}{\partial y},\frac{\partial}{\partial z}) =(x,y,z)

    梯度、散度与旋度

    若 定 义 数 量 场 f = f ( x , y , z ) 和 向 量 场 F ⃗ = ( P , Q , R ) , 则 有 : 从 数 量 场 到 向 量 场 的 梯 度 : g r a d ( f ) = ∇ f = ( ∂ f ∂ x , ∂ f ∂ y , ∂ f ∂ z ) 从 向 量 场 到 数 量 场 的 散 度 : d i v ( f ) = ∇ ⋅ f = ∂ f ∂ x + ∂ f ∂ y + ∂ f ∂ z 从 向 量 场 到 向 量 场 的 旋 度 : r o t ( F ⃗ ) = ∇ × F ⃗ = ( ∂ R ∂ y − ∂ Q ∂ z , ∂ P ∂ z − ∂ R ∂ x , ∂ Q ∂ x − ∂ P ∂ y ) \begin{aligned} &若定义数量场f=f(x,y,z)和向量场\vec F=(P,Q,R),则有:\\ &从数量场到向量场的梯度:grad(f)=\nabla f=(\frac{\partial f}{\partial x},\frac{\partial f}{\partial y},\frac{\partial f}{\partial z})\\ &从向量场到数量场的散度:div(f)=\nabla\cdot f=\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y}+\frac{\partial f}{\partial z}\\ &从向量场到向量场的旋度:rot(\vec F)=\nabla\times\vec F=(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z},\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x},\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}) \end{aligned} f=f(x,y,z)F =(P,Q,R),::grad(f)=f=(xf,yf,zf):div(f)=f=xf+yf+zf:rot(F )=×F =(yRzQ,zPxR,xQyP)

    有势场、保守场与无旋场

    对 于 向 量 场 F ⃗ = ( P , Q , R ) , 定 义 如 下 三 种 性 质 : ( 1 ) F ⃗ 是 有 势 场 ⇔ 存 在 数 量 场 u ( x , y , z ) , 使 得 g r a d ( u ) = F ⃗ ( 2 ) F ⃗ 是 保 守 场 ⇔ 对 任 意 闭 曲 线 Γ , 有 ∮ Γ P d x + Q d y + R d z = 0 ( 3 ) F ⃗ 是 无 旋 场 ⇔ 对 空 间 中 任 意 一 点 , 有 r o t ( F ⃗ ) = 0 且 以 上 三 种 定 义 在 数 学 上 等 价 \begin{aligned} &对于向量场\vec F=(P,Q,R),定义如下三种性质:\\ &(1)\vec F是有势场\Leftrightarrow存在数量场u(x,y,z),使得grad(u)=\vec F\\ &(2)\vec F是保守场\Leftrightarrow对任意闭曲线\Gamma,有\oint\limits_\Gamma Pdx+Qdy+Rdz=0\\ &(3)\vec F是无旋场\Leftrightarrow对空间中任意一点,有rot(\vec F)=0\\ &且以上三种定义在数学上等价 \end{aligned} F =(P,Q,R),:(1)F u(x,y,z),使grad(u)=F (2)F 线Γ,ΓPdx+Qdy+Rdz=0(3)F ,rot(F )=0

  24. 场论与积分公式

    G r e e n Green Green公式和 S t o k e s Stokes Stokes公式

    ∬ Σ r o t ( F ⃗ ) ⋅ d S ⃗ = ∮ Γ F ⃗ ⋅ d s ⃗ \iint\limits_\Sigma rot(\vec F)\cdot d\vec S=\oint\limits_\Gamma\vec F\cdot d\vec s Σrot(F )dS =ΓF ds

    G a u s s Gauss Gauss公式

    ∭ Ω d i v ( F ⃗ ) d Ω = ∯ S F ⃗ ⋅ d S ⃗ \iiint\limits_\Omega div(\vec F)d\Omega=\oiint\limits_S\vec F\cdot d\vec S Ωdiv(F )dΩ=S F dS

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值