1.7 常微分方程

第一章 数学分析

全文均为手敲,如果发现有误,请于评论区交流讨论留言,作者会及时修改

1.7 常微分方程

  1. 变量分离方程

    d y d x = f ( x ) g ( y ) ⇒ ∫ g ( y ) d y = ∫ f ( x ) d x + C \frac{dy}{dx}=\frac{f(x)}{g(y)}\Rightarrow\int g(y)dy=\int f(x)dx+C dxdy=g(y)f(x)g(y)dy=f(x)dx+C

  2. 齐次微分方程

    d y d x = f ( y x ) ( 令 y = u x ) ⇒ ∫ d u f ( u ) − u = ∫ d x x + C \frac{dy}{dx}=f(\frac{y}{x})(令y=ux)\Rightarrow\int\frac{du}{f(u)-u}=\int\frac{dx}{x}+C dxdy=f(xy)(y=ux)f(u)udu=xdx+C

  3. 齐次微分方程的推广

    d y d x = f ( a x + b y + c m x + n y + l ) ( 1 ) ∣ a b m n ∣ ≠ 0 , 令 { X = x − x 0 Y = y − y 0 Y = U X ⇒ d Y d X = f ( a X + b Y m X + n Y ) = g ( Y X ) ( 2 ) ∣ a b m n ∣ = 0 , 令 u = a x + b y ⇒ d u d x = b f ( u + c m a u + l ) + a = g ( u ) \begin{aligned} &\frac{dy}{dx}=f(\frac{ax+by+c}{mx+ny+l})\\ &(1)\left|\begin{matrix}a&b\\m&n\end{matrix}\right|\neq 0,令\begin{cases}X=x-x_0\\Y=y-y_0\\Y=UX\end{cases}\Rightarrow\frac{dY}{dX}=f(\frac{aX+bY}{mX+nY})=g(\frac{Y}{X})\\ &(2)\left|\begin{matrix}a&b\\m&n\end{matrix}\right|=0,令u=ax+by\Rightarrow\frac{du}{dx}=bf(\frac{u+c}{\frac{m}{a}u+l})+a=g(u) \end{aligned} dxdy=f(mx+ny+lax+by+c)(1) ambn =0, X=xx0Y=yy0Y=UXdXdY=f(mX+nYaX+bY)=g(XY)(2) ambn =0,u=ax+bydxdu=bf(amu+lu+c)+a=g(u)

  4. 一阶线性微分方程

    d y d x + P ( x ) y = Q ( x ) 基础解系 : f ( x ) = e ∫ − P ( x ) d x 齐次通解形式 : y = C f ( x ) 非齐次通解形式 : y = C ( x ) f ( x ) 求解 C ( x ) : C ′ ( x ) f ( x ) = Q ( x ) 非齐次通解公式 : y = e ∫ − P ( x ) d x ( ∫ Q ( x ) e ∫ P ( x ) d x d x + C ) \begin{aligned} &\frac{dy}{dx}+P(x)y=Q(x)\\ &基础解系:f(x)=e^{\int-P(x)dx}\\ &齐次通解形式:y=Cf(x)\\ &非齐次通解形式:y=C(x)f(x)\\ &求解C(x):C'(x)f(x)=Q(x)\\ &非齐次通解公式:y=e^{\int-P(x)dx}(\int Q(x)e^{\int P(x)dx}dx+C) \end{aligned} dxdy+P(x)y=Q(x)基础解系:f(x)=eP(x)dx齐次通解形式:y=Cf(x)非齐次通解形式:y=C(x)f(x)求解C(x):C(x)f(x)=Q(x)非齐次通解公式:y=eP(x)dx(Q(x)eP(x)dxdx+C)

  5. 伯努利方程

    d y d x + P ( x ) y = Q ( x ) y α ( 令 u = y 1 − α ) ⇒ d u d x + ( 1 − α ) P ( x ) u = ( 1 − α ) Q ( x ) \frac{dy}{dx}+P(x)y=Q(x)y^\alpha(令u=y^{1-\alpha})\Rightarrow\frac{du}{dx}+(1-\alpha)P(x)u=(1-\alpha)Q(x) dxdy+P(x)y=Q(x)yα(u=y1α)dxdu+(1α)P(x)u=(1α)Q(x)

    α > 0 \alpha>0 α>0,则 y = 0 y=0 y=0也是方程的解

  6. 二阶线性常系数微分方程:

    d 2 y d x 2 + p d y d x + q y = r ( x ) 特征方程 : r 2 + p x + q = 0 基础解系 : f 1 ( x ) , f 2 ( x ) = { e α x , x e α x , 二重根 e α x , e β x , 不同根 e α x cos ⁡ β x , e α x sin ⁡ β x , 复数根 齐次通解形式 : y = C 1 f 1 ( x ) + C 2 f 2 ( x ) 非齐次通解形式 : y = C 1 ( x ) f 1 ( x ) + C 2 ( x ) f 2 ( x ) \begin{aligned} &\frac{d^2y}{dx^2}+p\frac{dy}{dx}+qy=r(x)\\ &特征方程:r^2+px+q=0\\ &基础解系:f_1(x),f_2(x)=\begin{cases} e^{\alpha x},xe^{\alpha x},二重根\\ e^{\alpha x},e^{\beta x},不同根\\ e^{\alpha x}\cos\beta x,e^{\alpha x}\sin\beta x,复数根\\ \end{cases}\\ &齐次通解形式:y=C_1f_1(x)+C_2f_2(x)\\ &非齐次通解形式:y=C_1(x)f_1(x)+C_2(x)f_2(x)\\ \end{aligned} dx2d2y+pdxdy+qy=r(x)特征方程:r2+px+q=0基础解系:f1(x),f2(x)= eαx,xeαx,二重根eαx,eβx,不同根eαxcosβx,eαxsinβx,复数根齐次通解形式:y=C1f1(x)+C2f2(x)非齐次通解形式:y=C1(x)f1(x)+C2(x)f2(x)

    求解 C 1 , 2 ( x ) : { C 1 ′ ( x ) f 1 ( x ) + C 2 ′ ( x ) f 2 ( x ) = 0 C 1 ′ ( x ) f 1 ′ ( x ) + C 2 ′ ( x ) f 2 ′ ( x ) = r ( x ) 或采用待定系数法 : ( 1 ) 当 r ( x ) = e μ x P m ( x ) 时 , P m ( x ) 表示最高次数为 m 次的实多项式 : 实多项式特解形式 : y ∗ = x k e μ x A m ( x ) , k 为 μ 在特征方程根中的重数 ( 2 ) 当 r ( x ) = e μ x ( A k ( x ) cos ⁡ λ x + B l ( x ) sin ⁡ λ x ) 时 , 取 m = max ⁡ ( k , l ) : 复多项式特解形式 : y ∗ = x k e μ x [ A m ( x ) cos ⁡ λ x + B m ( x ) sin ⁡ λ x ] , k 为 μ ± λ i 的重数 \begin{aligned} &求解C_{1,2}(x):\begin{cases} C_1'(x)f_1(x)+C_2'(x)f_2(x)=0\\ C_1'(x)f_1'(x)+C_2'(x)f_2'(x)=r(x)\\ \end{cases}\\ &或采用待定系数法:\\ &(1)当r(x)=e^{\mu x}P_m(x)时,P_m(x)表示最高次数为m次的实多项式:\\ &实多项式特解形式:y^*=x^ke^{\mu x}A_m(x),k为\mu在特征方程根中的重数\\ &(2)当r(x)=e^{\mu x}(A_k(x)\cos\lambda x+B_l(x)\sin\lambda x)时,取m=\max(k,l):\\ &复多项式特解形式:y^*=x^ke^{\mu x}[A_m(x)\cos\lambda x+B_m(x)\sin\lambda x],k为\mu\pm\lambda i的重数 \end{aligned} 求解C1,2(x):{C1(x)f1(x)+C2(x)f2(x)=0C1(x)f1(x)+C2(x)f2(x)=r(x)或采用待定系数法:(1)r(x)=eμxPm(x),Pm(x)表示最高次数为m次的实多项式:实多项式特解形式:y=xkeμxAm(x),kμ在特征方程根中的重数(2)r(x)=eμx(Ak(x)cosλx+Bl(x)sinλx),m=max(k,l):复多项式特解形式:y=xkeμx[Am(x)cosλx+Bm(x)sinλx],kμ±λi的重数

  7. 恰当方程与积分因子

    若 ∂ M ∂ y = ∂ N ∂ x , 则微分方程 M d x + N d y = 0 称为恰当方程 且方程的解为 ∫ M d x + N d y = C \begin{aligned} &若\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x},则微分方程Mdx+Ndy=0称为恰当方程\\ &且方程的解为\int Mdx+Ndy=C \end{aligned} yM=xN,则微分方程Mdx+Ndy=0称为恰当方程且方程的解为Mdx+Ndy=C

    若不满足,则可寻找积分因子 μ ( x , y ) \mu(x,y) μ(x,y)使得 μ M d x + μ N d y = 0 \mu Mdx+\mu Ndy=0 μMdx+μNdy=0是恰当方程

    ( 1 ) 若 ∂ ∂ y [ 1 N ( ∂ M ∂ y − ∂ N ∂ x ) ] = 0 , 则可求得 μ ( x ) = exp ⁡ { ∫ 1 N ( ∂ M ∂ y − ∂ N ∂ x ) d x } ( 2 ) 若 ∂ ∂ x [ 1 M ( ∂ M ∂ y − ∂ N ∂ x ) ] = 0 , 则可求得 μ ( y ) = exp ⁡ { ∫ 1 M ( ∂ M ∂ y − ∂ N ∂ x ) d y } \begin{aligned} &(1)若\frac{\partial}{\partial y}[\frac 1N(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x})]=0,则可求得\mu(x)=\exp\{\int\frac 1N(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x})dx\}\\ &(2)若\frac{\partial}{\partial x}[\frac 1M(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x})]=0,则可求得\mu(y)=\exp\{\int\frac 1M(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x})dy\} \end{aligned} (1)y[N1(yMxN)]=0,则可求得μ(x)=exp{N1(yMxN)dx}(2)x[M1(yMxN)]=0,则可求得μ(y)=exp{M1(yMxN)dy}

  8. 一阶隐式微分方程

    ( 1 ) (1) (1)方程形式为 y = f ( x , y ′ ) y=f(x,y') y=f(x,y),令 p = y ′ p=y' p=y

    原方程两边对 x 求导 : p = d f d x + d f d p d p d x ( 1 ) 若方程有解 : p = φ ( x , C ) , 则原方程有通解 : y = f ( x , φ ( x , C ) ) ( 2 ) 若方程有解 : x = ψ ( p , C ) , 则原方程有通解 : { x = ψ ( p , C ) y = f ( ψ ( p , C ) , p ) ( 3 ) 若方程有解 : ϕ ( x , p , c ) = 0 , 则原方程有通解 : { ϕ ( x , p , c ) = 0 y = f ( x , p ) \begin{aligned} &原方程两边对x求导:p=\frac{df}{dx}+\frac{df}{dp}\frac{dp}{dx}\\ &(1)若方程有解:p=\varphi(x,C),则原方程有通解:y=f(x,\varphi(x,C))\\ &(2)若方程有解:x=\psi(p,C),则原方程有通解:\begin{cases}x=\psi(p,C)\\y=f(\psi(p,C),p)\end{cases}\\ &(3)若方程有解:\phi(x,p,c)=0,则原方程有通解:\begin{cases}\phi(x,p,c)=0\\y=f(x,p)\end{cases} \end{aligned} 原方程两边对x求导:p=dxdf+dpdfdxdp(1)若方程有解:p=φ(x,C),则原方程有通解:y=f(x,φ(x,C))(2)若方程有解:x=ψ(p,C),则原方程有通解:{x=ψ(p,C)y=f(ψ(p,C),p)(3)若方程有解:ϕ(x,p,c)=0,则原方程有通解:{ϕ(x,p,c)=0y=f(x,p)

    ( 2 ) (2) (2)方程形式为 F ( x , y ′ ) = 0 F(x,y')=0 F(x,y)=0,令 p = y ′ p=y' p=y

    合理构造 { x = φ ( t ) p = ψ ( t ) , 使得方程有解 : { x = φ ( t ) y = ∫ ψ ( t ) φ ′ ( t ) d t + C 合理构造\begin{cases}x=\varphi(t)\\p=\psi(t)\end{cases},使得方程有解:\begin{cases}x=\varphi(t)\\y=\int\psi(t)\varphi'(t)dt+C\end{cases} 合理构造{x=φ(t)p=ψ(t),使得方程有解:{x=φ(t)y=ψ(t)φ(t)dt+C

    ( 3 ) (3) (3)方程形式为 F ( y , y ′ ) = 0 F(y,y')=0 F(y,y)=0,令 p = y ′ p=y' p=y

    合理构造 { y = φ ( t ) p = ψ ( t ) , 使得方程有解 : { x = ∫ φ ′ ( t ) ψ ( t ) d t + C y = φ ( t ) 此外 , 若方程 F ( y , 0 ) = 0 有实根 y = k , 则 y = k 也是方程的解 \begin{aligned} &合理构造\begin{cases}y=\varphi(t)\\p=\psi(t)\end{cases},使得方程有解:\begin{cases}x=\int\frac{\varphi'(t)}{\psi(t)}dt+C\\y=\varphi(t)\end{cases}\\ &此外,若方程F(y,0)=0有实根y=k,则y=k也是方程的解 \end{aligned} 合理构造{y=φ(t)p=ψ(t),使得方程有解:{x=ψ(t)φ(t)dt+Cy=φ(t)此外,若方程F(y,0)=0有实根y=k,y=k也是方程的解

  9. 微分方程的奇解

    若微分方程的某个解上任意一点至少还有方程的另外一个解存在,则该解称为微分方程的奇解

    其中 p − 判别曲线 { F ( x , y , p ) = 0 F p ′ ( x , y , p ) = 0 ( p = d y d x ) 即为可能的奇解 , 需进一步验证 其中p-判别曲线\begin{cases}F(x,y,p)=0\\F'_p(x,y,p)=0\end{cases}(p=\frac{dy}{dx})即为可能的奇解,需进一步验证 其中p判别曲线{F(x,y,p)=0Fp(x,y,p)=0(p=dxdy)即为可能的奇解,需进一步验证

  10. 克莱罗微分方程

    y = x p + f ( p ) , p = d y d x 连续可微时称为克莱罗微分方程 其通解为 y = c x + f ( c ) , 奇解为通解直线族的包络 \begin{aligned} &y=xp+f(p),p=\frac{dy}{dx}连续可微时称为克莱罗微分方程\\ &其通解为y=cx+f(c),奇解为通解直线族的包络 \end{aligned} y=xp+f(p),p=dxdy连续可微时称为克莱罗微分方程其通解为y=cx+f(c),奇解为通解直线族的包络

  11. 高阶常系数线性微分方程

    微分方程 : d n x d t n + a 1 d n − 1 x d t n − 1 + ⋯ + a n − 1 d x d t + a n x = f ( t ) 特征方程 : r n + a 1 r n − 1 + ⋯ + a n − 1 r + a n = 0 k 重实根 λ 的基础解系 : t i − 1 e λ t ( i = 1 , 2 , ⋯   , k ) k 重复根 α ± β i 的基础解系 : t i − 1 e α t sin ⁡ β t , t i − 1 e α t cos ⁡ β t ( i = 1 , 2 , ⋯   , k ) \begin{aligned} &微分方程:\frac{d^nx}{dt^n}+a_1\frac{d^{n-1}x}{dt^{n-1}}+\cdots+a_{n-1}\frac{dx}{dt}+a_nx=f(t)\\ &特征方程:r^n+a_1r^{n-1}+\cdots+a_{n-1}r+a_n=0\\ &k重实根\lambda的基础解系:t^{i-1}e^{\lambda t}(i=1,2,\cdots,k)\\ &k重复根\alpha\pm\beta i的基础解系:t^{i-1}e^{\alpha t}\sin\beta t,t^{i-1}e^{\alpha t}\cos\beta t(i=1,2,\cdots,k)\\ \end{aligned} 微分方程:dtndnx+a1dtn1dn1x++an1dtdx+anx=f(t)特征方程:rn+a1rn1++an1r+an=0k重实根λ的基础解系:ti1eλt(i=1,2,,k)k重复根α±βi的基础解系:ti1eαtsinβt,ti1eαtcosβt(i=1,2,,k)

    待定系数法求解

    ( 1 ) 当 f ( t ) = e μ t P m ( t ) 时 , P m ( t ) 表示最高次数为 m 次的实多项式 : 实多项式特解形式 : x ∗ = t k e μ t A m ( t ) , k 为 μ 在特征方程根中的重数 ( 2 ) 当 f ( t ) = e μ t ( A k ( t ) cos ⁡ λ t + B l ( t ) sin ⁡ λ t ) 时 , , 取 m = max ⁡ ( k , l ) : 复多项式特解形式 : x ∗ = t k e μ t [ A m ( t ) cos ⁡ λ t + B m ( t ) sin ⁡ λ t ] , k 为 μ ± λ i 的重数 \begin{aligned} &(1)当f(t)=e^{\mu t}P_m(t)时,P_m(t)表示最高次数为m次的实多项式:\\ &实多项式特解形式:x^*=t^ke^{\mu t}A_m(t),k为\mu在特征方程根中的重数\\ &(2)当f(t)=e^{\mu t}(A_k(t)\cos\lambda t+B_l(t)\sin\lambda t)时,,取m=\max(k,l):\\ &复多项式特解形式:x^*=t^ke^{\mu t}[A_m(t)\cos\lambda t+B_m(t)\sin\lambda t],k为\mu\pm\lambda i的重数\\ \end{aligned} (1)f(t)=eμtPm(t),Pm(t)表示最高次数为m次的实多项式:实多项式特解形式:x=tkeμtAm(t),kμ在特征方程根中的重数(2)f(t)=eμt(Ak(t)cosλt+Bl(t)sinλt),,m=max(k,l):复多项式特解形式:x=tkeμt[Am(t)cosλt+Bm(t)sinλt],kμ±λi的重数

    常数变易法求解

    若 x 1 , ⋯   , x n 构成齐次通解的基础解系 , 则非齐次通解为 x = ∑ k = 1 n C k ( t ) x k , 其中 ∑ k = 1 n C k ′ ( t ) x k ( i ) ( t ) = 0 ( i = 0 , 1 , ⋯   , n − 2 ) ∑ k = 1 n C k ′ ( t ) x k ( n − 1 ) ( t ) = f ( t ) \begin{aligned} &若x_1,\cdots,x_n构成齐次通解的基础解系,则非齐次通解为x=\sum_{k=1}^nC_k(t)x_k,其中\\ &\sum_{k=1}^nC_k'(t)x_k^{(i)}(t)=0(i=0,1,\cdots,n-2)\\ &\sum_{k=1}^nC_k'(t)x_k^{(n-1)}(t)=f(t) \end{aligned} x1,,xn构成齐次通解的基础解系,则非齐次通解为x=k=1nCk(t)xk,其中k=1nCk(t)xk(i)(t)=0(i=0,1,,n2)k=1nCk(t)xk(n1)(t)=f(t)

  12. 欧拉方程

    方程形式 : x n d n y d x n + a 1 x n − 1 d n − 1 y d x n − 1 + ⋯ + a n − 1 x d y d x + a n y = 0 换元方式 : 令 x = e t 或 t = ln ⁡ x 换元结果 : D ( D − 1 ) ⋯ ( D − k + 1 ) y + ⋯ + a n − 1 D y + a n y = 0 , 其中 D = d d t \begin{aligned} &方程形式:x^n\frac{d^ny}{dx^n}+a_1x^{n-1}\frac{d^{n-1}y}{dx^{n-1}}+\cdots+a_{n-1}x\frac{dy}{dx}+a_ny=0\\ &换元方式:令x=e^t或t=\ln x\\ &换元结果:D(D-1)\cdots(D-k+1)y+\cdots+a_{n-1}Dy+a_ny=0,其中D=\frac{d}{dt} \end{aligned} 方程形式:xndxndny+a1xn1dxn1dn1y++an1xdxdy+any=0换元方式:x=ett=lnx换元结果:D(D1)(Dk+1)y++an1Dy+any=0,其中D=dtd

  13. 二阶齐次线性方程与刘维尔公式

    对于方程 d 2 y d x 2 + P ( x ) d y d x + Q ( x ) y = 0 , 如果已知一个特解 y 1 , 则可以求出通解 根据刘维尔公式 , 齐次方程通解为 : y = C 1 y 1 + C 2 y 1 ∫ 1 y 1 2 e − ∫ P ( x ) d x d x 通过观察法求特解 : ( 1 ) P ( x ) + x Q ( x ) = 0 ⇒ y = x ( 2 ) 1 + P ( x ) + Q ( x ) = 0 ⇒ y = e x ( 3 ) 1 − P ( X ) + Q ( x ) = 0 ⇒ y = e − x \begin{aligned} &对于方程\frac{d^2y}{dx^2}+P(x)\frac{dy}{dx}+Q(x)y=0,如果已知一个特解y_1,则可以求出通解\\ &根据刘维尔公式,齐次方程通解为:y=C_1y_1+C_2y_1\int\frac 1{y_1^2}e^{-\int P(x)dx}dx\\ &通过观察法求特解:\\ &(1)P(x)+xQ(x)=0\Rightarrow y=x\\ &(2)1+P(x)+Q(x)=0\Rightarrow y=e^x\\ &(3)1-P(X)+Q(x)=0\Rightarrow y=e^{-x} \end{aligned} 对于方程dx2d2y+P(x)dxdy+Q(x)y=0,如果已知一个特解y1,则可以求出通解根据刘维尔公式,齐次方程通解为:y=C1y1+C2y1y121eP(x)dxdx通过观察法求特解:(1)P(x)+xQ(x)=0y=x(2)1+P(x)+Q(x)=0y=ex(3)1P(X)+Q(x)=0y=ex

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值