1.前言
一个月前,Meta 发布了开源大模型 llama3 系列,在多个关键基准测试中优于业界 SOTA 模型,并在代码生成任务上全面领先。
此后,开发者们便开始了本地部署和实现,比如 llama3 的中文实现、llama3 的纯 NumPy 实现等。
几天前,有位名为「Nishant Aklecha」的开发者发布了一个从零开始实现 llama3 的存储库,包括跨多个头的注意力矩阵乘法、位置编码和每个层在内都有非常详细的解释,帮助我们理解大语言模型是如果构建和工作的。
该项目得到了大神 Karpathy 的称赞,他表示项目看起来不错,完全展开后,通过模块嵌套和相互调用,可以更容易看到实际的情况。
项目地址:https://github.com/naklecha/llama3-from-scratch
2.从零实现Llama3中文版
详细实现见仓库地址:wdndev/llama3-from-scratch-zh: 从零实现一个 llama3 中文版
项目主要翻译「Nishant Aklecha」的 llama3-from-scratch 仓库,并