从零实现Llama3中文版

1.前言

一个月前,Meta 发布了开源大模型 llama3 系列,在多个关键基准测试中优于业界 SOTA 模型,并在代码生成任务上全面领先。

此后,开发者们便开始了本地部署和实现,比如 llama3 的中文实现、llama3 的纯 NumPy 实现等。

几天前,有位名为「Nishant Aklecha」的开发者发布了一个从零开始实现 llama3 的存储库,包括跨多个头的注意力矩阵乘法、位置编码和每个层在内都有非常详细的解释,帮助我们理解大语言模型是如果构建和工作的。

在这里插入图片描述

该项目得到了大神 Karpathy 的称赞,他表示项目看起来不错,完全展开后,通过模块嵌套和相互调用,可以更容易看到实际的情况。

项目地址:https://github.com/naklecha/llama3-from-scratch

2.从零实现Llama3中文版

详细实现见仓库地址:wdndev/llama3-from-scratch-zh: 从零实现一个 llama3 中文版

项目主要翻译「Nishant Aklecha」的 llama3-from-scratch 仓库,并

### 配置 DeepSpeed 阶段用于 LLaMA3 模型工厂 对于大型语言模型LLaMA3,在训练过程中采用DeepSpeed可以显著提升效率并减少资源消耗。配置DeepSpeed阶段主要涉及冗余优化器(ZeRO, Zero Redundancy Optimizer)的不同级别设置。 #### ZeRO 优化等级概述 - **Stage 0**: 不启用任何内存节省技术,仅利用数据并行性加速训练过程[^1]。 - **Stage 1**: 启用了参数分片功能,使得每个GPU只保存部分模型参数副本,从而减少了整体显存占用量[^2]。 - **Stage 2**: 在 Stage 1 的基础上增加了梯度分片机制,进一步降低了单个 GPU 上所需存储空间的需求;此外还引入了通信重叠计算来提高性能表现[^3]。 - **Stage 3**: 结合前两个阶段的优点,并实现了完整的激活函数检查点化操作以及更高效的反向传播算法,最大限度地降低每台机器上的内存使用率[^4]。 #### 实际应用中的配置方法 为了针对 LLaMA3 进行有效的 DeepSpeed 设置,建议至少从 `stage=2` 开始尝试: ```json { "zero_optimization": { "stage": 2, "allgather_partitions": true, "allgather_bucket_size": 2e8, "reduce_scatter": true, "contiguous_gradients": true, "overlap_comm": true, "load_from_fp32_weights": false, "elastic_checkpoint": true }, ... } ``` 上述 JSON 片段展示了如何通过调整特定选项以适应不同硬件环境下的最优效果。例如,“allgather_partitions” 和 “reduce_scatter”的开启有助于更好地管理分布式系统的内部通讯开销。“overlap_comm” 参数允许在执行正向/逆向传递的同时处理消息队列,进而加快整个迭代周期的速度[^5]。 #### Python 脚本实例 下面是一个简单的Python脚本来展示如何加载预定义好的DeepSpeed配置文件并与 Hugging Face Transformers 库集成起来一起工作: ```python from transformers import AutoModelForCausalLM, TrainerCallback import deepspeed model_name_or_path = 'path/to/llama3' deepspeed_config_file = './ds_config.json' class DeepspeedConfigurator(TrainerCallback): def on_init_end(self, args, state, control, **kwargs): super().on_init_end(args, state, control, **kwargs) trainer = Trainer( model=AutoModelForCausalLM.from_pretrained(model_name_or_path), callbacks=[DeepspeedConfigurator()], deepspeed=deepspeed_config_file ) ``` 此代码片段假设已经存在名为 `ds_config.json` 的本地配置文档,其中包含了之前提到过的关于Zero Optimization的各项设定值[^6]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值