【负荷预测】基于CNN-LSTM-Attention的负荷预测研究(Python代码实现)

   💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、研究背景与意义

二、模型结构

三、研究步骤

四、研究成果

五、未来展望

📚2 运行结果

🎉3 参考文献

🌈4 Python代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于CNN-LSTM-Attention的负荷预测研究是一个结合了卷积神经网络(CNN)、长短期记忆网络(LSTM)和注意力机制(Attention)的复合模型,旨在提高电力负荷预测的精度和鲁棒性。以下是对该研究的详细概述:

一、研究背景与意义

负荷预测是电力系统中一项至关重要的任务,对于电力系统的规划、调度和运维具有重要意义。然而,由于负荷数据往往呈现出高度的非线性和非平稳性,传统的预测方法往往难以达到理想的预测效果。因此,基于深度学习技术的复合模型应运而生,以应对这一挑战。

二、模型结构

基于CNN-LSTM-Attention的负荷预测模型主要由以下几个部分组成:

  1. 卷积神经网络层(CNN)
    • 作用:用于提取负荷数据中的空间特征。通过卷积操作,CNN可以学习不同时间步长之间存在的局部相关性,并提取出关键的特征信息。
    • 优势:CNN在处理图像数据方面表现出色,其强大的特征提取能力同样适用于负荷数据的空间特征提取。
  2. 长短期记忆网络层(LSTM)
    • 作用:用于捕捉负荷数据中的时间特征。LSTM通过其独特的门控机制(遗忘门、输入门和输出门),可以有效地解决传统RNN网络存在的梯度消失问题,从而更好地学习长时依赖关系,并对历史负荷数据进行预测。
    • 优势:LSTM在处理时间序列数据方面具有显著优势,能够捕捉数据中的长期趋势和周期性变化。
  3. 注意力机制层(Attention)
    • 作用:用于为不同的时间步长分配不同的权重,突出对当前预测结果影响较大的时间步长。通过注意力机制,模型能够更加关注那些对预测结果贡献较大的特征或时间段,从而提高预测精度。
    • 优势:注意力机制的引入使得模型在处理复杂数据时更加灵活和高效,能够自适应地调整预测策略。

三、研究步骤

  1. 数据收集:从电力系统中获取历史负荷数据及相关影响因素(如天气、节假日等)。
  2. 数据预处理:处理缺失值、异常值等问题,确保数据的完整性和准确性。同时,对数据进行归一化处理,以便于后续处理。
  3. 特征工程:对每个VMD分量进行特征工程,提取出对预测有用的特征。
  4. 模型构建:按照上述模型结构构建CNN-LSTM-Attention复合模型。
  5. 模型训练:采用反向传播算法对模型进行训练,通过最小化损失函数来更新模型参数。
  6. 模型评估:使用多种评估指标(如MSE、RMSE、MAE等)对预测结果进行评估,并与其他常用预测模型进行对比。

四、研究成果

实验结果表明,基于CNN-LSTM-Attention的负荷预测模型在预测精度上优于传统预测方法。该模型能够有效地提取负荷数据中的多尺度特征,并捕捉时间序列数据中的长期依赖关系。同时,注意力机制的引入使得模型更加关注重要的特征或时间段,从而进一步提高了预测精度。

五、未来展望

未来研究可以进一步探索以下方向:

  1. 引入更先进的特征提取方法,如多尺度卷积或稀疏编码技术,以更好地捕捉负荷数据的复杂特征。
  2. 研究更先进的注意力机制,如自注意力机制或多头注意力机制,以提高模型的预测精度和鲁棒性。
  3. 将该模型应用于其他时间序列预测问题,如风力发电预测、交通流量预测等,以拓展其应用领域。

综上所述,基于CNN-LSTM-Attention的负荷预测研究为电力系统的负荷预测提供了一种新的思路和方法,具有重要的理论意义和应用价值。

📚2 运行结果

部分代码:

# 初始化存储各个评估指标的字典。
table = PrettyTable(['测试集指标','MSE', 'RMSE', 'MAE', 'MAPE','R2'])
for i in range(n_out):
    # 遍历每一个预测步长。每一列代表一步预测,现在是在求每步预测的指标
    actual = [float(row[i]) for row in Ytest]  #一列列提取
    # 从测试集中提取实际值。
    predicted = [float(row[i]) for row in predicted_data]
    # 从预测结果中提取预测值。
    mse = mean_squared_error(actual, predicted)
    # 计算均方误差(MSE)。
    mse_dic.append(mse)
    rmse = sqrt(mean_squared_error(actual, predicted))
    # 计算均方根误差(RMSE)。
    rmse_dic.append(rmse)
    mae = mean_absolute_error(actual, predicted)
    # 计算平均绝对误差(MAE)。
    mae_dic.append(mae)
    MApe = mape(actual, predicted)
    # 计算平均绝对百分比误差(MAPE)。
    mape_dic.append(MApe)
    r2 = r2_score(actual, predicted)
    # 计算R平方值(R2)。
    r2_dic.append(r2)
    if n_out == 1:
        strr = '预测结果指标:'
    else:
        strr = '第'+ str(i + 1)+'步预测结果指标:'
    table.add_row([strr, mse, rmse, mae, str(MApe)+'%', str(r2*100)+'%'])

return mse_dic,rmse_dic, mae_dic, mape_dic, r2_dic, table
# 返回包含所有评估指标的字典。

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]张惟东.基于CNN-LSTM-Attention的短期电力负荷预测研究[D].兰州理工大学,2022.

🌈4 Python代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

  • 11
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
搭建cnn-lstm-attention模型用于时序预测,可以分为以下几个步骤: 1. 数据预处理:将原始数据转换为可以输入模型的格式,通常是将时序数据切分为固定长度的序列,并进行标准化处理。 2. 搭建模型:将cnnlstmattention结合起来搭建模型。首先通过cnn提取序列中的特征,然后将特征输入lstm模型中进行时序建模,最后通过attention机制加强模型对重要特征的关注。 3. 训练模型:使用预处理后的数据训练模型,通常使用均方误差(MSE)或平均绝对误差(MAE)作为损失函数。 4. 验证模型:使用验证集验证模型的性能,通常使用均方根误差(RMSE)或平均绝对误差(MAE)作为评价指标。 5. 模型优化:根据验证结果对模型进行调整和优化,包括调整模型结构、调整超参数和正则化等。 下面是一个简单的cnn-lstm-attention模型的代码示例,供您参考: ```python import torch import torch.nn as nn import torch.nn.functional as F class CNN_LSTM_ATTENTION(nn.Module): def __init__(self, input_size, hidden_size, output_size, num_layers=2): super(CNN_LSTM_ATTENTION, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.num_layers = num_layers self.conv1 = nn.Conv1d(input_size, 64, kernel_size=3, stride=1, padding=1) self.conv2 = nn.Conv1d(64, 128, kernel_size=3, stride=1, padding=1) self.lstm = nn.LSTM(128, hidden_size, num_layers) self.fc = nn.Linear(hidden_size, output_size) self.attention = nn.Linear(hidden_size, 1) def forward(self, x): # CNN layer x = F.relu(self.conv1(x)) x = F.relu(self.conv2(x)) # LSTM layer x = x.permute(2, 0, 1) out, (h_n, c_n) = self.lstm(x) # Attention layer attn_weights = F.softmax(self.attention(out[-1]), dim=0) attn_applied = torch.bmm(out.permute(1, 2, 0), attn_weights.unsqueeze(2)).squeeze(2) # Fully connected layer y_pred = self.fc(attn_applied) return y_pred ``` 在上述代码中,我们使用了一个1D的卷积层(Conv1d)和一个LSTM层来提取序列特征,然后通过一个全连接层(Linear)来输出预测结果。此外,我们还使用了一个简单的Attention机制来加强模型对重要特征的关注。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值