💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
本文可以显示 Zernike 多项式在圆形、六边形、椭圆形、矩形或环形瞳孔上,也可以将表面数据拟合到这些瞳孔形状上。有关非圆形瞳孔形状的 Zernike 多项式的描述,请参阅 文献:
可以指定在 j-顺序或 (n,m) 表示法中使用的 Zernikes,Mahajan/Noll 或 Born&Wolf 归一化,条纹子集,以及使用哪种符号约定。还可以指定一个掩膜来选择用于拟合 Zernike 多项式的表面数据子集。最小二乘拟合系数将被计算。如果未指定表面数据,则该函数将显示在指定的瞳孔形状上指定的 Zernike 多项式之和。可以指定用于拟合的像素单位中单位圆的中心和半径。
摘要:"波前分析中的正交多项式:解析解" 是一个被广泛使用的概念,因为它们在圆形瞳孔上的正交性以及对经典像差的平衡表示。在最近的论文中,我们推导出了在六边形瞳孔上正交的闭合形式多项式,比如一个大镜子的六边形分段。我们将我们的工作扩展到椭圆形、矩形和正方形瞳孔。利用圆形多项式作为基函数,在这些瞳孔上进行正交化,我们推导出了闭合形式的正交多项式。这些多项式是独特的,因为它们不仅在这些瞳孔上是正交的,而且像 Zernike 圆形多项式一样,也表示平衡的经典像差。这些多项式以圆形多项式、极坐标和笛卡尔坐标的形式给出。还得到了给定瞳孔的正交系数与相应的 Zernike 系数之间的关系。一个一维缝孔瞳孔的正交多项式可以作为矩形瞳孔的一个极限情况获得。
📚2 运行结果
部分代码:
case 1
% only the radiusInPixels has been specified
radiusInPixels = unitCircle(1,1);
case 2
% the centerRow and centerCol have been specified
% so can now calculate the radius in Pixels.
centerRow = unitCircle(1,1);
centerCol = unitCircle(1,2);
% a matrix such that each element (r,c) has the value r-centerRow
rm = (((1:numrows)-centerRow)'*ones(1,numcols)).*mask;
% a matrix such that each element (r,c) has the value c-centerCol
cm = (ones(numrows,1)*((1:numcols)-centerCol)).*mask;
% sqrt(rm.^2 + cm.^2) is a matrix such that (r,c) contains the distance
% of (r,c) to the center (centerRow, centerCol).
radiusInPixels = max(max(sqrt(cm.^2 + rm.^2)));
case 3
% the centerRow, centerCol, radiusInPixels have been specified
centerRow = unitCircle(1,1);
centerCol = unitCircle(1,2);
radiusInPixels = unitCircle(1,3);
otherwise
% error.
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
🌈4 Matlab代码实现
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取