💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
【电动汽车响应率】考虑到电动汽车充放电调度问题中的放电奖励不同可能导致部分车主不愿意参与放电,设计响应率计算方法是很有必要的。响应率可以用来衡量车主对于放电任务的参与程度或者积极性。
1.EV需求响应模型
EV需求侧响应机制的主要目的是通过改变EV用户充电起始时间,使EV充电负荷在时序上避开电网负荷高峰,考虑到V2G技术,EV可在电网负荷用电高峰时,反向向电网供电,在电网低谷时再进行充电,从而实现削峰填谷,优化用电负荷曲线。
电负荷:
P_e_load=[380,375,380,347,417,430,550,600,730,870,1000,1110,1190,1170,975,840,720,700,840,1056,870,740,639,517];
然而,电动汽车参与需求响应会受到用户意愿的影响,仅客观考虑EV的充放电方式参与电网的优化调度,有失合理性,因此有必要分析在用户响应意愿下的EV充放电容量。即电动汽车参与电网侧的V2G需求响应会受到EV客观响应能力和主观响应意愿的共同影响。
2.客观响应能力分析:
考虑私家车的用车需求,仅在用户结束一天出行回家后才能参与系统的优化调度,考虑EV的剩余电量,若该EV当前电池SOC小于0.4,则可参与电网高峰放电,低谷充电。若大于0.4,则不进行任何充放电行为。由此得到EV的客观响应充放电容量。
3.EV用户主观响应意愿影响分析:
在EV客观充放电容量可响应电网调度的基础上,用户主观响应意愿越高,可参与系统调度的充放电容量越多,上限至客观可调度充放电容量。影响EV用户主观响应意愿因素:充放电补贴价格、EV电池损耗成本(电池反复充放引起)。
4.响应量分析
结合主客观因素,分析用户不同的响应意愿对充放电容量的影响。得到不同响应意愿下的充放电容量。逐步提高补贴价格,得到不同价格下的充放电容量
- 电网侧调度成本
以电网调度成本最小为目标,计算不同补贴价格下充放电的补偿或激励成本。
📚2 运行结果
2.1 响应率
2.2 响应率为36%
2.3 响应率50%
2.4 响应率80%
2.5 响应率100%
部分代码:
%% 决策变量定义
P_user12LA=sdpvar(1,24); %购电量
ec_2=sdpvar(30,24); %电动汽车充电变量
ed_2=sdpvar(30,24); %电动汽车放电变量
U_EVC_2=binvar(30,24); %电动汽车的放电状态位,取1时为放电,0为未放电
evc_2=sdpvar(30,24); %真正充电决策变量
evd_2=sdpvar(30,24); %真正放电决策变量
evdb_2=sdpvar(30,24); %考虑用户心理后
ev_2=sdpvar(30,24); %ev决策变量
%% 电动汽车停留时间
shuju=xlsread('数据.xlsx','时间'); %居民
shuju1=xlsread('数据.xlsx','负荷'); %居民
T_ev_2=shuju(1:30,1:24);
b_user=shuju(:,26);%放电0-1决策变量
soc_initial_2=[15.2,15.2,26.6,7.6,11.4,11.4,7.6,30.4,19,22.8,26.6,11.4,15.2,15.2,11.4,30.4,7.6,15.2,30.4,7.6,15.2,19,22.8,19,11.4,22.8,15.2,19,11.4,15.2];%ev到达初始的soc
%% 分时电价
P_BUILD=shuju1(2,:); %负荷
pe_grid_S=shuju1(4,:); %电网售电价
%% 约束条件
C=[];
%% 电动汽车
for j=1:30 %30次循环
C=[C,
evc_2(j,:)==T_ev_2(j,:).*ec_2(j,:), %充电变量
evd_2(j,:)==T_ev_2(j,:).*ed_2(j,:), %放电变量
evdb_2(j,:)==evd_2(j,:).*b_user(j)
];
%电动汽车充放电功率限制 0<=ec<=10*b(t);0<=ed<=10*b(t)
for k = 1:24
C=[C, 0<=evc_2(j,k)<=10*U_EVC_2(j,k), % 读取矩阵每个位置数据,先行后列 公式1
0<=evdb_2(j,k)<=10*(1-U_EVC_2(j,k)), % 读取矩阵每个位置数据,先行后列
];
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]王俊杰,贾雨龙,米增强,等.基于双重激励机制的电动汽车备用服务策略[J].电力系统自动化, 2020, 44(10):9.DOI:10.7500/AEPS20190826007.
[2] Leugoue E .电动汽车和V2G技术研究-充放电功率预测和参与电网频率控制策略[J].[2024-04-19].
[3]蔡国伟,姜雨晴,黄南天,等.电力需求响应机制下基于多主体双层博弈的规模化电动汽车充放电优化调度[J].中国电机工程学报, 2023, 43(1):14.