目录
一、引言
1.1 背景介绍
DeepSeek,中文名为“深度求索”,是一家位于杭州的人工智能公司,由知名对冲基金 High-Flyer 投资支持。该公司专注于人工智能基础技术研究,并以其开源的大型语言模型在业内脱颖而出。通过将这些模型开源,深度求索不仅推动了技术的发展,还让更多开发者能够参与到人工智能的进步中来,这种开放的态度赢得了广泛的关注和认可。
1.2 本地化部署的优势
通过本地部署,可以完全掌控数据的存储和传输过程,减少了因第三方平台安全漏洞导致的数据泄露风险。避免了将敏感信息上传到云端的风险。这对于涉及个人隐私或商业机密的数据尤为重要。
二、deepseek概述
DeepSeek是由杭州深度求索人工智能基础技术研究有限公司开发的AI大模型,具备强大的智能问答和多模态交互能力。它能够理解并生成自然语言,提供精准的回答和建议,适用于多个领域,如教育、科技、生活等。DeepSeek的核心优势在于其低成本、高效率的训练和推理能力,打破了传统N卡垄断,降低了大模型的使用门槛。
2.1 功能特点
(1) 深层次逻辑推理
DeepSeek 不仅能够处理简单的问题,还能在面对复杂问题时进行深入的逻辑分析。无论是多步骤的推理还是复杂的决策支持,DeepSeek 都能提供有力的帮助,帮助用户找到最佳解决方案。
(2) 文档解析与总结
无论您需要处理的是 PDF、Word 文档,还是其他格式的文件,DeepSeek 都能轻松应对。只需将文件上传给 DeepSeek,它就能快速分析内容,提取关键要点,并生成简洁明了的总结报告。这一功能特别适合需要高效处理大量文档的专业人士,如研究人员、律师或记者,显著提升工作效率。
(3) 实时信息获取
通过其强大的联网搜索功能,DeepSeek 能够实时抓取最新的信息和数据。这对于那些需要时刻了解最新动态的用户来说尤为重要,比如新闻工作者、市场分析师或任何需要及时获取最新资讯的人士。您可以依赖 DeepSeek 获取最前沿的信息,保持竞争力。当然这一点得结合实际,可能最新消息更新得时间点有所延后。
(4) 全方位应用场景
无论是对话聊天、语言翻译、创意写作、编程辅助、解题答疑、文献解读,还是旅行规划,DeepSeek 都能派上用场。简直是居家旅行必备良品!
2.2 核心优势
(1) 智能化
DeepSeek能够理解复杂的问题,并提供精准的解决方案。它通过深度学习和自然语言处理技术,能够理解用户的需求并提供个性化的建议。
(2) 多功能性
DeepSeek在多个领域都有广泛的应用,包括学习、工作和生活。它可以用作学习助手、编程助手、写作助手、生活助手和翻译助手等,满足用户在不同场景下的需求。
(3) 易用性
DeepSeek通过自然语言交互,用户无需学习复杂的操作即可与模型进行对话。这种交互方式使得用户能够轻松地获取所需的信息和服务。
(4) 低成本
DeepSeek的训练和推理成本较低,打破了传统N卡垄断,降低了大模型的使用门槛。这使得更多的企业和个人能够使用高性能的AI服务。
(5) 高效率
DeepSeek在推理能力和响应速度上表现出色,能够快速处理复杂的查询和任务,提供准确的答案和解决方案。
(6) 开源生态
DeepSeek采用了开源策略,吸引了大量开发者和研究人员的参与,推动了AI技术的发展和应用。
(7) 本地部署优势
DeepSeek支持本地部署,确保数据隐私和安全,同时提供更高的性能和稳定性,适合对数据安全要求较高的企业和机构。
三、本地部署流程
3.1 版本选择
本地部署就是自己部署DeepSeek-R1模型,使用本地的算力,
主要瓶颈:内存+显存的大小。
特点:此方案不用联网。
适合:有数据隐私方面担忧的或者保密单位根本就不能上网的。
使用满血版:DeepSeek R1 671B 全量模型的文件体积高达 720GB,对于绝大部分人而言,本地资源有限,很难达到这个配置
蒸馏版本:
蒸馏版本链接:https://huggingface.co/deepseek-ai
开源2+6个模型。R1预览版和正式版的参数高达660B,非一般公司能用。为进一步平权, 于是他们就蒸馏出了6个小模型,并开源给社区。最小的为1.5B参数,10G显存可跑。
如果你要在个人电脑上部署,一般选择其他架构的蒸馏模型,本质是微调后的Llama或Qwen模型,基本32B以下,并不能完全发挥出DeepSeek R1的实力。
3.2 部署过程
3.2.1 下载Ollama
Ollama 是一个开源的大型语言模型(LLM)平台,旨在让用户能够轻松地在本地运行、管理和与大型语言模型进行交互。 Ollama 提供了一个简单的方式来加载和使用各种预训练的语言模型,支持文本生成、翻译、代码编写、问答等多种自然语言处理任务。 Ollama 的特点在于它不仅仅提供了现成的模型和工具集,还提供了方便的界面和 API,使得从文本生成、对话系统到语义分析等任务都能快速实现。
访问链接: Ollama
根据自己的操作系统选择 ↓ ↓ ↓
3.2.2 安装Ollama
就傻瓜式安装
安装完成后,检验是否安装成功。
`win+r` 输入 cmd
命令行输入
ollama -v
能显示版本,就说明安装成功。
3.2.3 选择 r1 模型
3.2.4 选择版本
b代表10亿参数量,7b就是70亿参数量。这里的671B是 HuggingFace经过4-bit 标准量化的,所以大小是404GB
ollama 支持 CPU 与 GPU 混合推理。将内存与显存之和大致视为 系统的 “总内存空间”。 如果你想运行404GB的671B,建议你的内存+显存能达到500GB以 上
除了模型参数占用的内存+显存空间(比如671B的404GB)以 外,实际运行时还需额外预留一些内存(显存)空间用于上 下文缓存。预留的空间越大,支持的上下文窗口也越大。所 以根据你个人电脑的配置,评估你选择部署哪一个版本。如 果你想运行404GB的671B,建议你的内存+显存能达到500GB 以上
这里我们以7B为例,大多数的电脑都能够运行起来。
3.2.5 本地运行deepseek模型
再命令中,输入如下命令
ollama run deepseek-r1:7b
注意:
下载支持断点续传,如果下载中速度变慢,可以鼠标点击命 令行窗口,然后ctrl+c取消,取消后按方向键“上”,可以找到 上一条命令,即”ollama run deepseek-r1:7b“,按下回车会重新链接,按照之前进度接着下载。
下载完成后,自动进入模型,直接在命令行输入问题,即可得到回复。
获取帮助
/?
退出对话
/bye
3.3.6 查看已有模型
代码如下
ollama list
后续要运行模型,仍然使用之前的命令
ollama run deepseek-r1:7b
3.3 使用客户端工具
本地部署好模型之后,在命令行操作还是不太方便,我们继 续使用一些客户端工具来使用。
我们使用 Cherry Studio,Cherry Studio 是一个支持多模型服务的桌面客户端,为专业用户而打造,内置 30 多个行业的智能助手,帮助用户在多种场景下提升工作效率。
Cherry Studio的下载地址:https://cherry-ai.com/
就直接傻瓜式安装。
然后我们以Cherry Studio为例访问7b的蒸馏模型。
如何这里没有显示r1模型,那么说明你之前没有安装好,去重新安装。
然后去选择模型,值得注意的是,使用时要确保ollama客户端已启动。
然后提问 ↓ ↓ ↓
4. 总结
以上就是deepseek本地化部署的全部内容,部署流程参考B站尚硅谷 👇 👇 👇30-部署方式3:本地算力部署_哔哩哔哩_bilibili
更多内容点击下面链接查看 👇 👇 👇