手把手教你调参 YOLO v6(train.py)

距离YOLOv6发布已经有一周的时间了,中途修复了好多bug,一起来看看吧

官网网址:

YOLO v6https://github.com/meituan/YOLOv6

train.py参数分析

打开文件tools->train.py

1、介绍

 没啥用,担心我们不知道这是YOLOv6的train文件....

2、--data-path

 存放数据集路径的yaml,作者提供了一个coco和一个yolo格式训练的yaml

注意:v6不需要使用images文件夹,将以前images中的train和val文件夹图片与labels文件放在同一个目录就可以了,不然容易找不到数据集,这个bug官方还未更新,更新了请提醒我(7月1日)

正确的YOLO格式yaml文件:

将数据集A放在根目录:

 

还有一点,yolo v6目前使用单类别数据集训练时,会出现一系列的报错,尽量使用多类别,这个bug官方目前还没修复,虽然他们说支持单类别...

3、--conf-file 

 用于指定模型配置文件,根据自己的需求进行配置;v6的配置文件中使调参又方便了一些

 4.--img-size

 训练时图片的大小,默认是640*640,根据自己需求进行调整

5.--batch-size

 这个根据自己电脑显存进行调节,尽量越大越好

6、--epochs

 训练的次数,并不是越大越好,300左右基本就可以了

7、--workers

 默认8就好,如果自己电脑硬件不支持就填0,越接近0,训练的时候就会越占用CPU

8、--device

 显卡的使用,默认就是使用第一张卡

9、--eval-interval

 更新间隔评估;这个参数是真的坑,默认每20次更新一次,导致很多人的map都是0,还以为是程序的问题,坑了一大片人,官网论坛都在问,官方也没说是这里的情况

10、--eval-final-only

 在最后一个批次进行评估;默认是true,不需要进行改动

11、--heavy-eval-range

 在最后50个epochs时进行持续更新,可以和--eval-interval 一起使用

12、--check-images

 训练前检查图像数据集,默认true

13、--check-labels

 训练前检查标签数据集,默认true

14、--output-dir

 训练时输出的路径

15、--name

 训练数据保存到的文件名称

16、--dist_url

 默认的网址;不需要修改

17、--gpu_count

 GPU数量类型;默认整型

18、--local_rank

单机多卡训练;基本用不到

19、--resume

 断点训练,是否在之前训练的一个模型基础上继续训练;需要接着之前训练就改为true

总结:

目前YOLOv6的程序还不够完善,训练时会遇到各种问题,我做了个总结,希望能帮助到你们

最新版YOLOv6训练自己的数据集(超详细完整版!)https://blog.csdn.net/qq_58355216/article/details/125525243?spm=1001.2014.3001.5502

YOLOv6训练时报错解决方法https://blog.csdn.net/qq_58355216/article/details/125552713?spm=1001.2014.3001.5502下面是测试的教程:

手把手教你运行YOLOv6(超详细)https://blog.csdn.net/qq_58355216/article/details/125497521?spm=1001.2014.3001.5502

如果对你有帮助,请给个点赞关注支持吧!

持续更新中 ...

### YOLO v11 `train.py` 使用说明 YOLO v11 是由 Ultralytics 开发的一代目标检测框架,其训练过程可以通过调用 `train.py` 脚本来完成。以下是关于如何配置和运行该脚本的详细信息。 #### 训练前准备 在执行 `train.py` 前,需确保已完成以下准备工作: - **创建 Conda 虚拟环境并激活**:建议为项目单独设置虚拟环境以避免依赖冲突[^2]。 - **安装 GPU 版 PyTorch**:如果硬件支持 CUDA,则应优先选择 GPU 加速版本。 - **克隆 Ultralytics 仓库**:通过 Git 下载官方代码库[^4]。 - **下载预训练权重**:可选地加载预训练模型作为初始权重[^3]。 - **获取数据集及其配置文件**:例如 COCO 数据集以及对应的 YAML 配置文件。 #### 运行命令示例 假设已准备好上述条件,可以按照如下方式启动训练: ```bash python train.py --img 640 --batch 16 --epochs 50 --data coco.yaml --cfg yolov11.yaml --weights yolov11.pt ``` | 参数 | 描述 | |--------------|----------------------------------------------------------------------------------------| | `--img` | 输入图像尺寸,默认为 640x640 的正方形裁剪[^1]。 | | `--batch` | 批量大小,取决于显存容量调整合适数值。 | | `--epochs` | 总共训练轮次数量,依据具体需求设定合理范围。 | | `--data` | 数据集描述路径,通常是一个 `.yaml` 文件指定了类别数、训练验证集合位置等内容。 | | `--cfg` | 模型架构定义文件地址,用于指定网络层设计细节。 | | `--weights` | 初始化权重来源,可以选择官方提供或者自定义生成的 checkpoint。 | 以上参数均可以根据实际场景灵活定制。 #### 自定义数据集注意事项 当处理非标准数据源时(比如医疗影像),需要额外注意以下几个方面: - 图片标注格式转换成 YOLO 支持的形式; - 更新对应的数据清单 TXT 文件列表; - 修改 YAML 中有关类别的字段值匹配实际情况; #### 官方文档推荐学习资源 对于更深入的理解与实践指导,强烈建议访问官方 GitHub 页面查阅完整的 API 参考手册 或者参考第三方博客总结的经验分享[^5]。 ---
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mr Dinosaur

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值