手把手教你调参 YOLO v6(train.py)

距离YOLOv6发布已经有一周的时间了,中途修复了好多bug,一起来看看吧

官网网址:

YOLO v6https://github.com/meituan/YOLOv6

train.py参数分析

打开文件tools->train.py

1、介绍

 没啥用,担心我们不知道这是YOLOv6的train文件....

2、--data-path

 存放数据集路径的yaml,作者提供了一个coco和一个yolo格式训练的yaml

注意:v6不需要使用images文件夹,将以前images中的train和val文件夹图片与labels文件放在同一个目录就可以了,不然容易找不到数据集,这个bug官方还未更新,更新了请提醒我(7月1日)

正确的YOLO格式yaml文件:

将数据集A放在根目录:

 

还有一点,yolo v6目前使用单类别数据集训练时,会出现一系列的报错,尽量使用多类别,这个bug官方目前还没修复,虽然他们说支持单类别...

3、--conf-file 

 用于指定模型配置文件,根据自己的需求进行配置;v6的配置文件中使调参又方便了一些

 4.--img-size

 训练时图片的大小,默认是640*640,根据自己需求进行调整

5.--batch-size

 这个根据自己电脑显存进行调节,尽量越大越好

6、--epochs

 训练的次数,并不是越大越好,300左右基本就可以了

7、--workers

 默认8就好,如果自己电脑硬件不支持就填0,越接近0,训练的时候就会越占用CPU

8、--device

 显卡的使用,默认就是使用第一张卡

9、--eval-interval

 更新间隔评估;这个参数是真的坑,默认每20次更新一次,导致很多人的map都是0,还以为是程序的问题,坑了一大片人,官网论坛都在问,官方也没说是这里的情况

10、--eval-final-only

 在最后一个批次进行评估;默认是true,不需要进行改动

11、--heavy-eval-range

 在最后50个epochs时进行持续更新,可以和--eval-interval 一起使用

12、--check-images

 训练前检查图像数据集,默认true

13、--check-labels

 训练前检查标签数据集,默认true

14、--output-dir

 训练时输出的路径

15、--name

 训练数据保存到的文件名称

16、--dist_url

 默认的网址;不需要修改

17、--gpu_count

 GPU数量类型;默认整型

18、--local_rank

单机多卡训练;基本用不到

19、--resume

 断点训练,是否在之前训练的一个模型基础上继续训练;需要接着之前训练就改为true

总结:

目前YOLOv6的程序还不够完善,训练时会遇到各种问题,我做了个总结,希望能帮助到你们

最新版YOLOv6训练自己的数据集(超详细完整版!)https://blog.csdn.net/qq_58355216/article/details/125525243?spm=1001.2014.3001.5502

YOLOv6训练时报错解决方法https://blog.csdn.net/qq_58355216/article/details/125552713?spm=1001.2014.3001.5502下面是测试的教程:

手把手教你运行YOLOv6(超详细)https://blog.csdn.net/qq_58355216/article/details/125497521?spm=1001.2014.3001.5502

如果对你有帮助,请给个点赞关注支持吧!

持续更新中 ...

### 运行YOLOv11 `train.py` 训练脚本 为了运行YOLOv11中的`train.py`训练脚本,需遵循一系列特定的操作流程来确保顺利启动训练过程。虽然具体实现细节可能因版本更新而有所变化,但基于现有信息可以提供一个通用指南。 #### 准备工作 在执行任何Python脚本之前,确认已安装必要的依赖库并设置了适当的工作环境至关重要。对于YOLO系列模型而言,这通常意味着要准备好PyTorch框架以及其它辅助工具包[^2]。 #### 解析命令行参数 通过定义好的`parse_opt()`函数处理来自终端输入的各种选项和参数。这些参数控制着诸如使用的数据集路径(`data`)、图像尺寸(`imgsz`)、预训练权重文件位置(`weights`)等重要属性[^3]。 #### 启动训练过程 核心逻辑封装于`main()`函数内部,在这里会依次完成如下操作: - 打印当前配置的关键字以便调试; - 判断是否存在可恢复的检查点用于继续未完成的任务; - 设置是否启用分布式计算模式提高效率; - 应用遗传算法或其他方法自动调整超参数以寻找更优解; - 加载指定架构的目标检测网络实例; - 配置优化策略包括但不限于选择合适的梯度下降算法及其初始学习率; - 调整批量大小适应硬件资源限制同时保持性能稳定; - 组织训练样本流并通过多线程加速读取速度; - 实施自适应锚框机制提升边界框预测精度; - 设定额外增强措施如混合精度运算支持GPU加速; - 定期评估验证集上的表现记录最佳成绩直至达到预定周期数或满足收敛条件为止; 最后一步由`run()`负责调用上述组件形成完整的流水线结构。 #### 示例命令 假设已经克隆了官方仓库并且位于项目根目录下,则可以通过下面这条指令开启一轮新的实验: ```bash python train.py --data coco128.yaml --imgsz 640 --batch-size 16 --epochs 50 --weights yolov11.pt ``` 此命令指定了COCO小型测试版作为源素材集合,采用分辨率为$640\times640$像素的正方形裁剪方式呈现每张图片,每次迭代抽取16份样本来构成批次,并计划重复该循环共五十遍,利用名为`yolov11.pt`的二进制文档初始化神经元连接权值矩阵[^4]。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mr Dinosaur

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值