python数据分析与可视化(第2版)——3.8本章实训

#3.8本章实训
#求花瓣长度均值最大的品种和花瓣长度方差最小的品种
#导入模块
import numpy as np
import csv
#获取数据
iris_data=[]
with open("D:\python test\iris.csv") as csvfile:
    csv_reader=csv.reader(csvfile)
    birth_header=next(csv_reader)
    for row in csv_reader:
        iris_data.append(row)   #循环遍历每一行,将每一行的数据都加到列表中
iris_data    #输出列表
#数据清除:去掉索引号
iris_list=[]
for row in iris_data:
    iris_list.append(tuple(row[1:]))  #对元组切片并将其加入到列表中
iris_list   #输出列表
#创建数据类型
datatype=np.dtype([("Sepal.Leng",float),
                  ("Sepal.Width",float),
                  ("Petal.Leng",float),
                  ("Petal.Width",float),
                  ("Species",np.str_,40)])
print(datatype)
#创建二维数组
iris_data_array=np.array(iris_list,dtype=datatype)
print(iris_data_array)    #输出二维数组
#取出花瓣长度和种类放入一个列表
petal_species=iris_data_array[["Petal.Leng","Species"]]
petal_species
#等级去重
petal_species_unique=np.unique(petal_species["Species"])
#用list来存放每种品种的均值和方差,便于后面转为array和采用sort函数
species_mean_var_list=[]   #创建一个空列表
#针对每个品种,采用np.mean和np.var函数
for i in petal_species_unique:
    mean=np.mean(petal_species[petal_species["Species"]==i]["Petal.Leng"])  #求平均值
    var=np.var(petal_species[petal_species["Species"]==i]["Petal.Leng"])    #求方差
    species_mean_var_list.append((i,mean,var))   #将种类和所求的平均值、方差加到列表中
print(species_mean_var_list)
#将列表转为ndarry
datatype=np.dtype([("Species",np.str_,40),("mean",float),("var",float)])
species_mean_var_array=np.array(species_mean_var_list,dtype=datatype)
print(species_mean_var_array)
#找出所有品种中花瓣长度均值最大的品种和方差最小的品种
print("花瓣长度均值最大的品种:",np.sort(species_mean_var_array,order="mean")[-1])
print("花瓣长度方差最小的品种:",np.sort(species_mean_var_array,order="var")[0])

 

 

 

 

 

 

 

 

 

 

 

 

### 回答1: 要下载Python数据分析可视化教程,你可以按照以下步骤进行操作。 首先,打开你的浏览器,并进入一个可靠的网络资源下载网站,例如GitHub、CSDN或者Python官方网站等。在搜索框中输入“Python数据分析可视化教程”,并点击搜索按钮。 接下来,浏览搜索结果,找到适合你的教程。你可以根据教程的评价、作者的信誉和教材的内容来选择最合适的教程。 一旦找到合适的教程,点击下载按钮。通常,会有不同的下载格式可供选择,如PDF、EPUB、MOBI等。根据你的需求选择一个合适的格式。 下载完成后,你可以将教程保存到你的计算机或移动设备中的任意文件夹中。确保文件名和格式都是正确的,以便于以后阅读和使用。 最后,打开下载的教程文件,使用你习惯的 PDF 阅读软件(如Adobe Acrobat Reader)来阅读和学习。 通过以上步骤,你可以轻松地下载Python数据分析可视化教程,并开始学习和掌握相关的技能。加油! ### 回答2Python数据分析可视化教程是一种教学资源,可帮助学习者掌握使用Python进行数据分析可视化的技能。下载教程可以让学习者在离线情况下学习和实验,提高学习的效率。 下载Python数据分析可视化教程的步骤如下: 1. 在网络上搜索Python数据分析可视化教程下载资源。 2. 找到合适的下载链接或网站,确保网站的可信度。 3. 点击下载链接或访问网站,按照指示完成下载过程。 4. 一般情况下,下载资源可能是一个压缩文件,需要解压缩后才能使用。 5. 在解压缩后的文件夹中,可以找到教程的相关文件,如电子书、示例代码等。 6. 通过阅读教程的电子书或使用示例代码,学习Python数据分析可视化的基本概念和技能。 7. 如果教程中包含了实际数据集,可以使用Python数据分析库,如Pandas、NumPy等来进行数据处理和分析。 8. 使用Python可视化库,如Matplotlib、Seaborn等,将数据可视化,并生成图表和图形。 9. 根据教程的指导,使用Python编写代码并运行,通过实践来巩固所学内容。 10. 在学习过程中,可以通过教程中的示例比较和尝试不同的方法,提升自己的理解和实践能力。 总之,下载Python数据分析可视化教程可以让学习者离线学习和实践数据分析可视化技能,提高学习效率和学习成果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值