中心卡方变量 (Central Chi-Square Variable)
定义
中心卡方分布是一种常见的概率分布,广泛应用于统计推断和假设检验。一个随机变量 \(X\) 服从自由度为 \(k\) 的中心卡方分布,记作 \(X \sim \chi^2_k\),如果 \(X\) 是 \(k\) 个独立标准正态分布随机变量平方和的分布,即:
\[ X = Z_1^2 + Z_2^2 + \cdots + Z_k^2 \]
其中,\(Z_i \sim N(0, 1)\) 表示独立的标准正态分布随机变量。
性质
1. **期望和方差**:
\[
\mathbb{E}[X] = k
\]
\[
\mathrm{Var}(X) = 2k
\]
2. **概率密度函数 (PDF)**:
\[
f_X(x; k) = \frac{1}{2^{k/2} \Gamma(k/2)} x^{k/2 - 1} e^{-x/2}, \quad x > 0
\]
其中,\(\Gamma(\cdot)\) 是伽玛函数。
3. **累积分布函数 (CDF)**:
\[
F_X(x; k) = P(X \leq x) = \frac{\gamma(k/2, x/2)}{\Gamma(k/2)}
\]
其中,\(\gamma(\cdot, \cdot)\) 是不完全伽玛函数。
应用
- **假设检验**:卡方分布广泛用于卡方检验,如独立性检验和适合度检验。
- **方差分析**:在方差分析 (ANOVA) 中,卡方分布用于构造检验统计量。
- **估计方差**:在统计估计中,用于估计总体方差。
非中心卡方变量 (Non-central Chi-Square Variable)
定义
非中心卡方分布是中心卡方分布的推广,适用于当正态随机变量的均值不为零的情况。一个随机变量 \(Y\) 服从自由度为 \(k\) 和非中心参数为 \(\lambda\) 的非中心卡方分布,记作 \(Y \sim \chi^2_k(\lambda)\),如果 \(Y\) 是 \(k\) 个独立正态分布随机变量平方和的分布,其中每个正态分布的均值可能不为零。
具体地,设 \(Z_i \sim N(\mu_i, 1)\),则:
\[ Y = Z_1^2 + Z_2^2 + \cdots + Z_k^2 \]
其中,\(\lambda = \sum_{i=1}^k \mu_i^2\) 是非中心参数。
性质
1. **期望和方差**:
\[
\mathbb{E}[Y] = k + \lambda
\]
\[
\mathrm{Var}(Y) = 2(k + 2\lambda)
\]
2. **概率密度函数 (PDF)**:
\[
f_Y(y; k, \lambda) = \frac{1}{2} e^{-(y + \lambda)/2} \left(\frac{y}{\lambda}\right)^{(k-2)/4} I_{k/2-1}\left(\sqrt{\lambda y}\right), \quad y > 0
\]
其中,\(I_{k/2-1}(\cdot)\) 是第一类修正贝塞尔函数。
3. **累积分布函数 (CDF)**:
非中心卡方分布的累积分布函数没有简单的解析表达式,通常通过数值方法计算。
应用
- **检验统计量**:非中心卡方分布用于构造假设检验中的检验统计量,尤其在备择假设下。
- **功效分析**:在统计功效分析中,用于计算检验的功效和样本量。
- **信号检测理论**:用于描述检测信号的性能和误差概率。
例子
中心卡方分布例子
假设我们有 \(k = 3\) 个独立的标准正态分布随机变量 \(Z_1, Z_2, Z_3 \),则其平方和 \(X = Z_1^2 + Z_2^2 + Z_3^2\) 服从自由度为 3 的中心卡方分布,即 \(X \sim \chi^2_3\)。其期望为 3,方差为 6,概率密度函数为:
\[
f_X(x; 3) = \frac{1}{2^{3/2} \Gamma(3/2)} x^{3/2 - 1} e^{-x/2}, \quad x > 0
\]
非中心卡方分布例子
假设我们有 \(k = 2\) 个独立的正态分布随机变量 \(Z_1 \sim N(2, 1)\) 和 \(Z_2 \sim N(1, 1)\),则其平方和 \(Y = Z_1^2 + Z_2^2\) 服从自由度为 2 和非中心参数为 \(\lambda = 2^2 + 1^2 = 5\) 的非中心卡方分布,即 \(Y \sim \chi^2_2(5)\)。其期望为 \(2 + 5 = 7\),方差为 \(2(2 + 2 \times 5) = 24\),概率密度函数为:
\[
f_Y(y; 2, 5) = \frac{1}{2} e^{-(y + 5)/2} \left(\frac{y}{5}\right)^{(2-2)/4} I_{1/2-1}\left(\sqrt{5y}\right), \quad y > 0
\]
总结
- **中心卡方分布**:用于独立标准正态随机变量平方和的分布,广泛应用于统计推断和假设检验。
- **非中心卡方分布**:用于均值不为零的正态随机变量平方和的分布,在信号检测和功效分析中有重要应用。
理解和应用这些分布,可以有效地解决实际中的统计问题。