欧拉计划Problem_16

C#

#include <stdio.h>
int main(){
    int mul[400] = {0};
    mul[0] = mul[1] = 1;
    for(int i =0;i < 1000; i++){
        for(int j =1;j <= mul[0];j++){
            mul[j] *= 2;
        }
        for(int j = 1;j <= mul[0]; j++){
            if(mul[j] < 10) continue;
            mul[j+1] += mul[j] / 10;
            mul[j] %= 10;
            mul[0] += (mul[0] == j);
        }
    }
    printf("%d\n",mul[0]);//存放位数
    int ans = 0;
    for(int i = 1;i <= mul[0]; i++){
        ans += mul[i];
    }
    printf("%d\n",ans);//各位数字之和
    return 0;
}

JAVA

package exercise;

import java.math.BigInteger;

public class _幂的数字和 {
	public static void main(String[] args) {
		BigInteger num = new BigInteger("2");
		for(int i=1;i<1000;i++) {
			num = num.multiply(new BigInteger("2"));
		}
		System.out.println(num);
		int sum = 0;
		String str = num+"";
		String[] str1 = str.split("");
		for(int i=0;i<str1.length;i++) {
			sum += Integer.parseInt(str1[i]);
		}
		System.out.println(sum);

	}
}

 结果:1366

num = 10715086071862673209484250490600018105614048117055336074437503883703510511249361224931983788156958581275946729175531468251871452856923140435984577574698574803934567774824230985421074605062371141877954182153046474983581941267398767559165543946077062914571196477686542167660429831652624386837205668069376

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,以下是采用Python编写的一个简单的示例程序,用于演示如何使用向前欧拉、向后欧拉和梯形欧拉方法求解初值问题,并计算相应的截断误差和收敛精度: ```python import numpy as np import matplotlib.pyplot as plt # 定义一个函数,表示初值问题的导数函数 def f(t, y): return y - t**2 + 1 # 定义一个函数,表示精确解 def exact(t): return (t+1)**2 - 0.5*np.exp(t) # 定义向前欧拉方法 def euler_forward(y0, t0, h, n): y = [y0] t = [t0] for i in range(n): y.append(y[i] + h*f(t[i], y[i])) t.append(t[i] + h) return y, t # 定义向后欧拉方法 def euler_backward(y0, t0, h, n): y = [y0] t = [t0] for i in range(n): y.append(y[i] + h*f(t[i+1], y[i+1])) t.append(t[i] + h) return y, t # 定义梯形欧拉方法 def trapezoidal(y0, t0, h, n): y = [y0] t = [t0] for i in range(n): y.append(y[i] + 0.5*h*(f(t[i], y[i]) + f(t[i+1], y[i] + h*f(t[i], y[i])))) t.append(t[i] + h) return y, t # 计算截断误差和收敛精度 def calculate_error(y, t, h): n = len(y) - 1 error = [0] for i in range(1, n+1): exact_value = exact(t[i]) error.append(abs(y[i] - exact_value)) convergence_order = np.log10(error[-1]/error[-2])/np.log10(h) return error, convergence_order # 设置初始条件和参数 y0 = 0.5 t0 = 0 h = 0.1 n = 10 # 使用向前欧拉方法求解初值问题 y_forward, t_forward = euler_forward(y0, t0, h, n) error_forward, convergence_order_forward = calculate_error(y_forward, t_forward, h) # 使用向后欧拉方法求解初值问题 y_backward, t_backward = euler_backward(y0, t0, h, n) error_backward, convergence_order_backward = calculate_error(y_backward, t_backward, h) # 使用梯形欧拉方法求解初值问题 y_trapezoidal, t_trapezoidal = trapezoidal(y0, t0, h, n) error_trapezoidal, convergence_order_trapezoidal = calculate_error(y_trapezoidal, t_trapezoidal, h) # 绘制精确解和数值解的图像 t_exact = np.linspace(t0, t0+n*h, 100) y_exact = exact(t_exact) plt.plot(t_exact, y_exact, label='Exact') plt.plot(t_forward, y_forward, 'o-', label='Euler Forward') plt.plot(t_backward, y_backward, 's-', label='Euler Backward') plt.plot(t_trapezoidal, y_trapezoidal, '^-', label='Trapezoidal') plt.legend() plt.xlabel('t') plt.ylabel('y') plt.title('Numerical Solution of Initial Value Problem') # 输出截断误差和收敛精度 print('Euler Forward: Error =', error_forward, ', Convergence Order =', convergence_order_forward) print('Euler Backward: Error =', error_backward, ', Convergence Order =', convergence_order_backward) print('Trapezoidal: Error =', error_trapezoidal, ', Convergence Order =', convergence_order_trapezoidal) plt.show() ``` 这段代码中,我们首先定义了一个初值问题的导数函数 `f` 和精确解函数 `exact`,然后分别实现了向前欧拉、向后欧拉和梯形欧拉方法的函数 `euler_forward`、`euler_backward` 和 `trapezoidal`。接着,我们定义了一个计算截断误差和收敛精度的函数 `calculate_error`,并使用这个函数计算了每种方法的截断误差和收敛精度。最后,我们绘制了精确解和数值解的图像,并输出了截断误差和收敛精度的结果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值