GFNC: Unsupervised Link Prediction Based on Gravitational Field and Node Contraction

Abstract

目前,大多数现有的链路预测算法只是简单地研究节点对之间的相互关系,而没有考虑节点对之间的相互作用力和高阶关系。为了找到这个问题的解决方案,本文引入了引力场的概念,然后从物理学的角度提出了一种新颖的算法框架。该框架应用于经典的链路预测算法,有效提升其预测性能。首先,应用节点收缩方法来衡量节点重要性,并使用基于相似度的链接预测算法来计算节点对之间的相似度值。其次,将节点的重要性作为质量属性引入到引力场模型中,并将节点对之间的相似度值作为节点对之间的距离度量。从而建立了物理学角度的复杂网络的引力场模型。最后,为无向复杂网络的边分配权重,提出一种基于加权局部随机行走的链路预测算法。采用链接预测方法评价引力场模型的合理性和实用价值。实验结果表明,使用所提出的算法框架的大多数链路预测算法都得到了改进,最小改进为2%,最大改进为33%;从而验证了算法的有效性和可行性。

索引术语——引力场、链路预测、节点收缩、加权局部随机游走(LRW)。

NOMENCLATURE

H网络. v 网络中的节点。 n 节点数。 |E|边数。 ki 节点 vi 的度数。 Dij 最短路径长度。

∂[H ] 网络 H 的聚集。 H ∗vi 收缩 vi 后的网络。 IMC(vi ) 节点 vi 的重要性。 P 转移概率矩阵。 G 万有引力常数。 S(a, b) a 和 b 之间的节点相似度。 F 引力。 M 引力相似值。 Z 重要性矩阵。

I. INTRODUCTION

  随着复杂网络科学的爆炸性发展,研究人员为各种复杂系统构建了复杂网络模型,这有助于解决现实世界的问题,例如交通拥堵问题、电力故障等。为了更有效地找到这些现实世界问题的解决方案,研究人员研究了各种复杂网络系统的特征和行为,例如复杂网络的演化机制、连通性和抗破坏性等。我们可以发现,这些行为和特征与复杂系统中个体的行为密不可分,更与个体之间的关系密不可分[1]。链接预测为挖掘个体之间的关系提供了一种有效的预测机制[2]。链路预测的定义利用网络的拓扑特性和节点特征来预测未连接节点对之间的连接概率[3]。

   链接预测对现实生活有着深远的影响。例如,许多传统的生物学研究在进行检测蛋白质-蛋白质相互作用的实验时,面临着蛋白质网络 [4] 更高的成本。如果链接预测算法找出最有可能产生相互作用的蛋白质结构,则进行实验来验证其机制和功能;这样就可以提高实验成功率,降低实验成本。在社交网络[5]、[6]中,陌生人成为朋友的可能性可以通过链接预测来预测。这项研究的结果应用于在线社交工具,以推荐现在不是朋友和将来可能成为朋友的用户。它促进了社交工具的应用,提高了用户对社交系统的忠诚度。此外,链接预测还应用于以下领域,例如信息推荐系统[7]、[8]、[9]、[10]、异常检测[11]、煤矿隐患[12]、药物发现[ 13]、全球货币市场[14]、标签分类[15]和知识获取[16]。

   在复杂网络中,评估节点重要性最直接、最常见的标准是节点的度。如果一个节点与其他节点连接的边越多,则意味着该节点的度越大,这进一步表明该节点在网络中至关重要[17]。节点的介数定义为通过该节点的最短路径的数量。因此,引入介数的概念[18]。如果节点介数越大,说明该节点在网络中越重要,事实证明该方法是成功的。但它需要计算所有最短距离并记录它们在节点对之间的路径,因此计算过于复杂。纳德利等人。 [19]认为,如果删除网络中的一个节点,可能会导致任意两个节点之间的最短距离变大。但该方法的计算需要较大的时间成本。基于节点删除的方法[20]利用删除节点时网络结构的变化来衡量节点的重要性。然而,当删除一些会导致网络断开的节点时,这些节点的重要性将等于0,这使得评估结果不准确。因此,[21]提出了一种通过收缩连接到目标节点的边来评估节点重要性的方法。如果节点签约后网络的凝聚力越高,则该节点的重要性就越大。该方法保留了网络的连通性并克服了节点删除的缺点。

  众所周知,两个有质量的物体会产生相互吸引力,这种产生相互作用力的模型称为万有引力场模型,其中的相互作用力称为万有引力。在该场中,两个物体a和b之间的引力由万有引力常数G、物体的质量Ma和Mb以及a和b之间的距离r确定,计算公式为F = G·Ma·Mb /r 2.研究对象的质量和距离是计算引力场中物体之间的引力值最重要的属性。万有引力是维持天体运动的内在驱动力。同时,物体相互作用中的引力也不容忽视。目前,万有引力的概念已经非常成熟,一些学科中也有很多利用万有引力来探索物体之间的关系和活动的研究成果。比如分子之间的运动也要考虑引力的作用,航空的发展也离不开引力的作用,包括神舟十一号载人飞船与天宫二号的自动对接,人造地球卫星的正常运行到指定轨道。天气气候的变化、潮汐的涨落、人类的运动都与引力密切相关。如图1所示,这是天体间引力的示例图。

图1.天体之间的引力。两个天体之间会产生相互吸引力,其他天体也会对它们产生引力,它们也会对其他天体产生引力。万有引力受到天体质量和天体之间距离的影响。复杂网络中的节点相似性关系就是这样的关系,它受到节点重要性和节点之间距离的影响。

  目前大多数链路预测算法只是研究节点对之间的相互关系,而不考虑节点之间的相互作用力。例如,基于相似度的算法考虑了节点对之间的相似度,可以认为两个节点越相似,这两个节点的连接概率就越高是在未来。基于最大似然估计的算法考虑了网络结构的组织方式,然后直接计算似然。基于机器学习的算法考虑了网络中节点的特征信息,进一步综合挖掘网络结构的信息。上述算法利用网络结构来计算节点对之间未来的连接概率,主要研究节点对之间的交互关系。这些交互关系反映了网络的内在结构,但没有考虑节点之间的交互作用力。众所周知,相互作用关系和相互作用力是两个不同的研究对象,其研究范围也不同;前者主要研究复杂网络领域,后者主要研究物理等领域。

   需要注意的是,物体之间的引力是自然界中一个非常重要的因素;研究它们之间的关系时必须考虑到这一点。例如,天体运动和分子运动都需要考虑引力。在复杂网络领域,节点是现实对象的抽象,复杂网络也是复杂系统的抽象。

   事实上,在研究天体或分子之间的引力时需要考虑两个因素。一是物体的质量,二是物体之间的距离。当两个天体(分子)的质量越大,它们之间的引力就越大,反之,它们之间的引力就越小。引力场的模型实际上类似于研究复杂网络中节点之间的相似性。质量相当于复杂网络中节点的重要性,距离相当于复杂网络中节点之间的路径。两个节点越重要,它们之间的路径越小,因此,这两个节点越相似,它们就越有可能连接到一条边。例如,在社交网络中,两个人成为朋友的可能性受到很多因素的影响,比如这两个人的重要性在整个社交圈中,一个人的朋友数量,以及两个人之间共同的朋友数量。当这两个人有更多的朋友或者在社交圈中处于重要地位时,他们成为朋友的概率就更高。考虑到这种模式的相似性,我们引入万有引力公式来研究复杂网络中节点之间的关系。注意,引入万有引力公式来计算或测量两个节点之间的权重或相似度;因为节点之间的这种权重或相似性与引力公式很好地匹配,所以我们不会将天体(分子)之间的引力转化为复杂的网络模型来研究引力场。万有引力公式也恰好与我们计算复杂网络中未连接节点之间的连接概率的模型相匹配。因此,引入万有引力公式来计算节点之间的相似度是有效且可行的。

   链路预测的任务主要是通过节点之间现有的连接来计算和评估未来无连通边的节点对的连接概率。链路预测是复杂网络领域的一个重要研究分支,为后续任务,如结构预测、节点推荐、网络异常分析等提供技术支撑.

     本文第一个主要工作是我们用节点之间的相似度来代替节点之间的距离。将节点间的相互引力引入到复杂网络中,就是为复杂网络构建物理引力场的过程。如果将引力的概念和理论引入复杂网络领域,则由于所有节点都处于同一引力场中,因此在建模过程中可以省略或不涉及引力场中的万有引力常数G。测量节点间距离的方法可以利用复杂网络中已有的计算指标。证明评估未连接节点对的未来连接概率主要是基于计算节点对之间的相似度值,优于基于距离的评估方法;然而,现有的大多数链路预测算法在评估节点之间的连接概率时,在计算过程中同时考虑路径和距离信息。

    本文的第二个主要工作是为复杂网络中的节点分配质量属性,即用节点的重要性来代替质量属性。如何有效地度量复杂网络中节点的质量属性是一项非常重要的任务。众所周知,在引力场模型中,所引用的物体必须具有质量属性。虽然复杂网络是复杂系统中对象及对象之间关系的投影和映射,但研究对象的海量属性却不容忽视。因此,为复杂网络中的节点分配海量属性可以使网络更加真实地还原真实环境的状态。

   本文的第三个主要工作是为无向无权复杂网络中的边分配权重,然后,我们提出一种适当的算法来预测带权网络中未连接的节点对的连接概率。 Liu和Lü[22]提出了一种基于局部随机游走的链路预测算法[局部随机游走(LRW)],该算法在更大规模的复杂网络中表现出更好的性能,其预测精度优于大多数现有的链路预测算法。 LRW是为了大规模无向无权网络的链路预测而提出的,但对于无向加权或有向复杂网络无法获得更好的结果。目前,由于关于如何计算和使用边的权重仍然存在争议,加权网络的链路预测任务仍然没有提出良好的结果。因此,提出了一种基于加权局部随机游走(WLRW)的链路预测算法。

   综上所述,本文提出了一种基于引力场和节点收缩的WLRW链路预测计算框架,简称GFNC。 GFNC方法利用各节点签约后的网络聚集度来评估各节点的重要性;该方法取代了引力场模型中物体的质量,并使用基于相似度的链接预测算法作为评价指标来衡量节点对之间的距离。因此,该方法构建了改进的复杂网络引力场模型。为了模拟真实引力环境中节点的状态,考虑节点对之间的直接引力值和间接引力值,其中直接引力值是目标节点之间的引力值,间接引力值是目标节点的所有邻居节点对另一个目标节点的引力。然后,针对无向加权网络提出了一种基于WLRW的链路预测算法。

    综上所述,本文提出了一种基于引力场和节点收缩的WLRW链路预测计算框架,简称GFNC。 GFNC方法利用各节点签约后的网络聚集度来评估各节点的重要性;该方法取代了引力场模型中物体的质量,并使用基于相似度的链接预测算法作为评价指标来衡量节点对之间的距离。因此,该方法构建了改进的复杂网络引力场模型。为了模拟真实引力环境中节点的状态,考虑节点对之间的直接引力值和间接引力值,其中直接引力值是目标节点之间的引力值,间接引力值是目标节点的所有邻居节点对另一个目标节点的引力。然后,针对无向加权网络提出了一种基于WLRW的链路预测算法。通过实验比较发现大多数基于这些网络表示学习方法的链路预测算法的预测性能都不如本文提出的方法。

II. RELATED WORK

  为了更有效地挖掘复杂网络的行为和特征,研究人员提出了不同类型的链路预测算法。主要有以下三个类。

第一类是基于节点相似度的算法,这表明如果两个节点越相似,它们之间的连接概率就越大。该类算法复杂度较低,但预测性能较差。基于节点相似性的算法分为四个子类。第一个子类是基于本地网络信息的算法,例如公共邻居(CN)、资源分配(RA)、Adamic-Adar(AA)和优先附件(PA)[2]。此外,近年来许多研究人员还提出了一些基于局部信息的算法,预测性能较之前的经典算法有了很大的提高,例如PAA[29]、CCNC[30]、ZHA[31]、以及其他[32]、[33]。同时,Lee和Zhou[34]对局部社区范式、Hebb理论以及基于两跳框架合理性的新论点进行了梳理和讨论,并总结了局部相似性指数。第二个子类是基于路径的算法,例如本地路径(LP)[35]、Katz[36]和LHN-II[37]。此外,阿齐兹等人。 [38]考虑了所有LP和路径上所有节点的特征,然后针对网络局部结构信息的相似性指标提出了准局部扩展方法和全局扩展方法,可以有效地预测之间的未来连接可能性节点对。马等人。 [39]提出了考虑社区影响的基于路径的概率模型,然后证明社区内部节点的连通性等同于社区间节点的连通性。第三个子类是基于随机游走的算法,例如平均通勤时间(ACT)[40]、叠加随机游走(SRW)[22]、LRW[22]、互影响随机游走(MIRW)[41]和多路复用LRW(MLRW)[42]。此外,刘等人。 [43]通过改进SRW指数提出了一种NC链路预测算法。可以发现,与经典算法相比,这些算法能够有效提升预测性能。第三个子类是其他相似性算法,例如矩阵森林理论索引(MFI)[44]、转移相似性PA(TSPA)[45]和转移相似性CN(TSCN)[45]。

   第二类是基于最大似然估计的算法,它从似然分析开始,可以指导不同的算法框架。该类的性能较好,但算法复杂度较高。例如,杨等人。 [46]提出了一种基于最大似然估计的脑网络链路预测算法,解决了脑网络链路预测性能较差的问题。文献[47]提出了基于最大似然分析的闭路模型的算法框架,实验结果表明,定义Hamilton量后,该模型的预测精度优于层次模型。

   第三类是基于机器学习的算法,利用节点的信息特征进一步挖掘网络结构信息。例如,Xing[48]结合机器学习和链接预测构建了医学问答检测和推荐系统,可以解决大量回答不佳和误诊的问题。 Malhotra和Goyal[49]充分利用监督学习方法,提出了一种新颖的链接预测算法,该算法利用网络的结构特征来训练分类器,通过单层和复用上每个节点对之间的链接概率网络可以计算。考虑到传统AdaBoost算法的缺点,提出了一种基于Adaboost的改进算法[50],将其应用于链路预测,算法的预测精度较好。

   近年来,随着图嵌入方法的发展,链路预测的研究越来越倾向于使用图嵌入方法,主要分为神经网络方法和网络表示学习方法。例如,李等人。 [51]提出了一种基于神经网络的新型链路预测算法,利用贪心策略巧妙地解决了神经网络方法对实验结果的影响。张和陈[52]提出了一种基于图神经网络的链接预测方法,可以同时从基于图神经网络的局部封闭子图、嵌入和属性中学习。上述两种基于神经网络的链路预测不仅考虑了网络的结构信息,还考虑了节点的丰富特征,​​链路预测性能优良,但需要考虑监督信号。贝拉曼德等人。 [53]提出了一种改进的 DeepWalk 方法,解决了归因社交网络中的链接预测问题。该方法基于网络表示,用低维稠密向量表示网络,并考虑节点和上下文节点的特征嵌入信息,具有较好的预测性能。徐等人。 [54]提出了一种 JK-Net 架构来实现自适应、结构感知的表示。该方法表示节点的层次邻域信息。每层通过聚合前一层的邻域来增加影响力分布的大小,并考虑节点之间的高阶关系。但这种高阶关系与本文中的节点间高阶关系不同,本文通过考虑节点间的直接力和间接力来考虑节点间的高阶关系。

   先前也有一些将引力场理论引入复杂网络的研究工作。例如,Duan[1]提出了一种基于CN的引力场模型的链路预测算法。然而,该算法通过计算 CN 之间的相互引力来评估两个研究对象之间的相似性,忽略了两个研究对象之间的直接引力。吴等人。 [55]提出了一种时空网络位置漂移模型估计动态网络的未来链接,引入引力场来模拟相邻节点对中心节点的吸引力,表现出更好的预测性能。该模型利用邻居节点的连接能力来衡量吸引力,其中邻居节点的连接能力通过邻居节点的链路数来评价。然而,用邻居节点的度来衡量邻居节点对中心节点的吸引力是有偏差的,因为节点的度不能全面评价该节点在网络中的影响力。当邻居节点的度较小,但介数中心性或接近中心性较高时,节点对整个网络的影响力也可能较大,对中心节点的吸引力也可能较大。将节点的度作为计算节点对之间引力的直接属性,文献[56]建立了复杂网络的引力场模型,其中节点对之间的引力作为重要性的主要评价节点数;这样,我们就可以得到节点重要性排序。但该算法还不够合理,无法通过节点度来构建引力场模型。众所周知,在引力场模型中,物体的质量越大,物体所具有的引力就越大。然而,度数较大的节点并不是复杂网络中最有影响力的节点;从而不能推断当前节点与其他节点未来的连接概率更大。因此,我们使用节点收缩算法来计算节点的重要性,并将得到的节点重要性值作为引力场模型中的质量属性;然后,计算物体之间的直接和间接重力值。由此,构建的模型更加符合实际情况和引力场状态,进而提出基于节点收缩和引力场的计算框架,简称GFNC。基于GFNC框架,分配未加权网络中的边权重,并提出一种基于WLRW的链路预测算法。通过实验结果,我们发现GFNC算法的性能优于当前大多数现有的链路预测算法。

III. LINK PREDICTION OF WEIGHTED LOCAL RANDOM WALK BASED ON GRAVITATIONAL FIELD AND NODE CONTRACTION

A. Main Symbols Comparison Table

   如命名法所示,为了方便读者,本节提供了本文所用符号的主要对照表。

B. Method for Evaluating Node Importance

  1)节点收缩[21]:设 vi 是网络 H 中的一个节点,收缩 vi 意味着将与 vi 相邻的所有 ki 节点与 vi 合并,并且原来与这些节点关联的边现在与 vi 关联。如果节点vi是网络H的重要节点,则签约节点vi后整个网络将更好地聚集。 H ∗vi 用来表示网络签订合同后 vi .图 2 显示了合约节点 v4 的示意图。

图 2. 合约节点 v4 示意图。首先,我们需要合约节点 v3,它与节点 v4 相邻。这些原本与节点 v3 相邻的节点现在连接到节点 v4。然后,我们以同样的方式对原本与节点 v4 相邻的其他节点进行合约。

   文献[21]对网络集聚进行了定义,定义为网络的集聚程度。网络的聚集程度取决于两个因素,即两个节点之间的连通性和网络中节点的数量n,其中节点对之间的平均路径长度l用于衡量任意两个节点之间的连通性。众所周知,平均路径长度越短,节点数量越少,这意味着整个社交网络更加聚集。因此,网络H的聚集定义如下:

其中 n ≥ 2,Dij 表示节点 vi 和 v j 之间的最短路径长度。显然,0<∂[H]≤1。

  众所周知,如果网络中某个节点的度数很大,那么当我们对该节点进行合约时,整个网络就会被压缩成一个更紧凑的网络。

  为了更好地计算网络H中节点vi的重要性,通过节点收缩给出节点重要性的定义如下:

将式(1)代入式(2),可得:

由(3)可知,节点 vi 的重要性取决于节点 vi 的度数和位置。假设节点vi的度更大,并且节点vi在网络中处于重要位置。那么,签约节点 vi 后,整个网络的凝聚力会更强,这表明节点 vi 是网络中的关键节点,这也体现了该节点的重要性。

   由(3)可知,节点 vi 的重要性取决于节点 vi 的度数和位置。假设节点vi的度更大,并且节点vi在网络中处于重要位置。那么,签约节点 vi 后,整个网络的凝聚力会更强,这表明节点 vi 是网络中的关键节点,这也体现了该节点的重要性。

   我们知道 1 ≤ l(H ∗vi ) < l(H ),所以我们有

C. Improved Gravitational Field Model

'   众所周知,两个有质量的物体会产生相互吸引力,这种产生相互作用力的模型称为引力场模型。万有引力是维持天体运动的内在驱动力。同时,在研究任何物体或关系时,必须考虑它们之间的引力。我们知道世界空间中两个有质量的物体之间的引力方程为

其中M是物体的特征信息,如物体的质量、大小、重要性等,r是两个物体之间的距离,G是万有引力常数。在复杂网络中,节点是对象的抽象,复杂网络也是复杂系统的抽象。因此,研究复杂网络中节点对之间的关​​系还需要参考节点之间的相互引力。

   众所周知,在引力场中,质量可以体现物体的重要性,而节点的度是复杂网络中反映节点重要性最常见、最直观的属性。 He和Li[56]将节点抽象为引力场中的质点,其中每个节点对网络中的其他节点施加相互吸引力,然后构建复杂网络的引力场模型,其中M是引力场的度。节点。这是

  众所周知,在引力场模型中,物体的质量越大,该物体对周围物体的引力就越大。但度数较大的节点不一定是复杂网络中最有影响力的节点,例如桥节点,它仅由两条边连接;因此,不能推断该节点与其他节点未来连接的概率更大。因此,我们使用节点收缩的方法[21]来评估节点重要性。如果节点签约后网络的凝聚力更强,则该节点的重要性就更大。该方法保留了网络的连通性,克服了节点删除的缺点。因此,采用节点收缩的方法构建改进的复杂网络引力场模型来评估节点重要性,其中M表示节点的重要性。我们有

节点相似度S(a,b)用于评估(5)中的距离r。一般来说,如果节点对彼此相似,则节点对之间的距离较小。那么,我们有

如果节点b与节点a越相似,节点b的重要性越大,则节点b对节点a获得的引力越大,则两个节点的相关性越高。因此,改进后的复杂网络引力方程为

由于节点均处于同一引力场中,因此在建模过程中可以省略或不涉及引力场中的万有引力常数G。因此,我们有

D. Link Prediction Based on Weighted Local Random Walk

   假设在t时刻,有一个从节点vx出发的随机游走者,在t+1时刻,随机游走者走到节点vy的概率用πxy(t)表示,πxy(t)的定义给出如下:

  其中 π x(0) 是初始化一维列向量,πx(0) = ex,其中第 x 个元素等于 1,其他元素等于 0。P 是马尔可夫转移概率矩阵,每个元素 Pxy = axy/kx 表示随机游走器从 vx 开始下一步走到 vy 的概率,其中 kx 是节点 vx 的度数,如果节点 vx 与节点 vy 相邻,则 axy 等于 1,否则为 0。

   进一步,网络中各节点的资源分布初始设置为q,节点vx的初始资源设置与其度kx成正比;那么,我们可以得到 qx 的方程,即 qx = kx /2|E|,其中|E|是网络 H 中的边数。归一化后,节点 vx 和节点 vy (LRW) [22] 之间基于局部随机行走的相似度为

LRW算法中,任意两个节点的转移概率Pxy由vx和vy是否相邻以及当前节点的度数决定,这也意味着当前节点vx转移到任意节点的概率,即与 vx 相邻,同样等于 1/kx,但不合理。事实上,当前节点到任意相邻节点的概率是不同的,这还取决于当前节点的相邻节点的度数、介数、重要性、当前节点与相邻节点的相互作用力等等。 。

  因此,为了找到问题的解决方案,本文将网络中两个节点vx和vy之间的直接和间接引力值相加,作为这两个节点之间的引力相似度值Mxy。设vx行走到vy的过渡权重为Pxy;当vx与vy相邻时,Pxy = Mxy,当vx与vy不相邻时,Pxy = 0,其中直接引力值为vx与vy之间的引力,间接引力值为vx与vy之间的引力。

  value表示节点vy的邻居节点对vx的引力和节点vx的邻居节点对vy的引力之和。那么,我们有

其中运算符 [°] 表示哈达玛积,即两个矩阵对应元素的乘积。当两个节点相邻时,将对应的元素相乘,则有Pxy = Mxy;否则,Pxy = 0。由此,系统演化方程改进为

 改进系统演化方程后,节点vx和节点vy之间基于WLRW的相似度(WLRW)为

其中q是每个节点的初始资源分配,qx = kx /2|E|。

   从第III-A节和第III-B节可以看出,引力相似度值由节点的度、节点的重要性以及节点在网络中的位置决定。因此,由于任意节点之间的引力相似度值不同,因此当前节点行走到邻居节点的转移权重也不同,这可以使网络更加真实地还原真实环境中的状态。通过为网络中的所有边分配权重,并比较当前节点与不同邻居节点之间的边的权重,选择与权重最大的边相连的邻居节点作为下一个要行走的节点。

图 3. 网络由节点 2 和 8 及其相邻节点组成。

   举例计算节点2和节点8之间的转移权重P28。图3是由节点2和8及其邻居组成的网络。请注意,(x) 用于表示 x 的邻居集合。

1) 节点2和节点8之间的直接引力值为

2)节点2与节点8的邻居节点之间的引力值为

3)节点8与节点2的邻居节点之间的引力值为

4) 节点2和节点8之间的引力相似度值为

5) 然后,从节点2步行到节点8的转移权重如下:

由于节点2和8相邻,则A28 = 1,节点2步行到节点8的转移权重如下:

因此,根据(31),我们将计算节点 vx 和 vy 之间的转移权重的方程推广如下:

  将(32)计算出的转移权值代入(15),即可快速计算出节点间的相似度值。为了更容易理解WLRW算法的思想,我们将在第III-D节详细介绍该算法的框架。

E. Algorithmic Framework

    他提出的WLRW算法本质上是一种基于复杂网络和GFNC相结合的算法框架的新颖的链路预测算法。针对复杂网络的引力场模型对GFNC算法进行了评估,进一步说明了该模型的合理性和实用价值。在GFNC算法中,我们利用节点对的相似度方法来评估引力场中的距离,并利用前后网络的集聚变化对目标节点进行收缩,评估节点重要性,然后将得到的节点重要性值作为引力场中的质量属性。之后,构建了复杂网络的引力场模型。然后,将两个节点之间的直接和间接引力值相加,作为当前节点随机行走到邻居节点的权重,解决了当前节点行走到任意邻居节点的转移概率问题,相等且更真实恢复真实环境中的状态。

  如图4所示,是GFNC算法的算法框架。 GFNC算法的框架可以分为三个模块。

图4. GFNC的算法框架。 GFNC算法的框架可以分为三个模块。模块1的任务是计算节点的重要性以及节点之间的相似度。模块2的任务是计算节点之间的引力相似度值并得到转移概率矩阵。模块3的任务是为未加权网络的边分配权重,并通过局部随机游走计算两个节点之间更新的相似度。

模块1:利用式(8)得到节点之间的相似度S(a,b)作为引力场中的距离属性r,得到节点收缩后的节点重要性Z(i)作为引力场中的质量属性M利用式(3)为构建复杂网络的引力场模型奠定基础

模块2:首先构建模型,得到节点间的引力方程。其次,利用式(10)得到直接和间接引力值,然后将它们相加作为节点对之间的引力相似度值Mxy。然后计算当前节点随机游走到下一个节点的转移权值,得到转移权值矩阵P。当网络中两个节点相邻时,转移权重Pxy等于Mxy,当两个节点不相邻时,转移权重Pxy等于0;然后,为未加权网络中的边分配权重。由此,提出了GFNC框架。

模块3:使用GFNC框架提出一种基于加权LRW的链路预测算法。通过AUC和精度评价指标来评价链路预测性能。当前节点的随机游走过程中,会在相邻边中选择权重最大的边进行游走,然后选择下一个游走节点。重复该过程,直到节点到达目标节点

为了展示更多细节,提供了GFNC算法框架的伪代码,也分为以下三个模块。

模块1:计算节点重要性以及节点之间的相似度值(由于模块1代码较多,仅提供核心伪代码)。模块2:计算转移权重矩阵。模块3:基于加权LRW的链路预测。

IV. EXPERIMENTAL RESULTS AND ANALYSIS

V. C ONCLUSION

  利用契约节点后的网络聚集度来评价节点重要性,将其作为质量属性,并利用不同链路预测基准算法得到的节点之间的相似度作为引力场中的距离属性。然后,提出了一种基于节点收缩的复杂网络引力场模型。为了检验模型的合理性和实际价值,计算当前节点走到下一个节点的转移权值;同时,将权值分配给当前节点与其邻居节点之间的边,进而提出一种基于GFNC的GFNC算法框架。由此,基于GFNC算法框架提出了WLRW算法。最后,在四个真实数据集上的实验模拟结果表明,在四个真实数据集上使用GFNC算法框架后,基于节点相似度的算法的性能得到了一定程度的提高;尤其是PA和ACT算法的性能提升尤为明显,并且使用GFNC算法优化后Katz、MFI和TSCN的链路预测精度接近于1,这表明所提出的引力场模型是合理的。

   所提出的GFNC算法仍然存在一些缺点。尽管该算法对无向和无权网络中的边分配权重,但它只考虑了无向网络。因此,我们将来会考虑为有向网络分配权重,并考虑有向网络中的链路预测性能。

  • 22
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值