Minimizing rumor influence in multiplex online socialnetworks based on human individual and social

 abstract

   随着网络社交网络的日益普及,谣言的传播速度比以往更快、范围更广,形成了一种传播环境,在社会上产生了广泛的影响。如今,个人加入多个在线社交网络,谣言同时在其中传播,从而为谣言传播问题带来了新的维度。受这些事实的启发,本文试图解决多重在线社交网络中谣言影响最小化的问题。在这项工作中,我们考虑对此类虚构信息的传播过程进行建模,作为最大限度减少其影响的重要一步。因此,我们分析社交网络中的个人和社会行为;随后,我们提出了一种新颖的谣言扩散模型,称为 HISB 模型。在这个模型中,我们提出了一种针对阻尼谐振运动的谣言模拟的个体行为的公式。随后,在传播过程中纳入个人的意见。此外,通过考虑个人和社会行为,整合了多重网络中个体之间的谣言传播规则。此外,我们还提出了 HISB 模型传播过程,该过程描述了多路在线社交网络中谣言的传播。基于该模型,我们从网络推理的角度并利用生存理论,提出了一种真相运动策略,以最大限度地减少多重在线社交网络中谣言的影响。该策略一旦发现谣言,就会选择最有影响力的节点,发起真相活动,提高人们的认知度,从而防止谣言的影响。因此,我们提出了一种基于似然原理的贪心算法,保证了最优解的近似值在63%以内。系统地,我们在从 Twitter、Facebook 和 Slashdot 爬取的真实单一网络以及真实在线社交网络(Facebook、Twitter 和 YouTube)的多重网络上进行了实验。首先,结果表明 HISB 模型比文献中提出的模型能够更真实地再现现实世界谣言传播的所有趋势。此外,模拟表明,所提出的模型根据文献准确地突出了人为因素的影响。其次,与文献中的方法相比,实验证明了我们的策略在单网络和单网络情况下最小化谣言影响的有效性。多重社交网络传播。结果证明,该方法能够捕捉谣言的动态传播过程,更准确地选择目标节点,以最小化谣言的影响。

1. Introduction

   过去十年见证了多个在线平台的出现,这些平台帮助用户通过广告赚取利润。因此,寻找新受众导致了“点击诱饵”标题的创建,以引起人们的好奇心。谣言作为工具相关的信息陈述,代表了吸引更多读者的理想“点击诱饵”标题。此外,在线社交网络(OSN)促进了信息的快速和广泛传播,并为传播这些内容以吸引新受众创造了完美的环境。通过利用谣言的吸引力和 OSN 的广泛影响力,谣言可以比事实信息传播得更快、更广泛 [2]。结果,诸如“自然治愈癌症”或“疫苗很危险”之类的标题在 OSN 中广泛传播,并且一些用户相信这些说法。例如,网络上有关疫苗的谣言增强了反疫苗运动的影响力,让更多家长认识到疫苗的危险性。因此,近年来麻疹流行1;在 15 世纪与欧洲人接触后的几年里,这种疾病已成为 90% 的美洲原住民死亡的原因 [3]。显然,此类虚假信息在网上发布可以迅速改变舆论[4],制造社会恐慌[5],甚至造成死亡。因此,OSN 中的谣言已成为对社会的重大威胁,应在其传播之前予以制止。

   对谣言传播过程进行建模是最小化其不利影响的重要一步。谣言传播模型应该允许研究人员(1)突出这一过程中涉及的重要因素; (2)制定限制谣言传播的策略,以及(3)测试这些方法以确保它们可以应用于现实世界的情况。然而,人类行为和互动中观察到的多样性和复杂性超出了我们的想象,这使得研究人员[6]对这种现象进行建模变得极具挑战性。此外,OSN 的大尺寸和复杂拓扑使得准​​确的谣言传播模型的概念变得更具挑战性。

    多项研究已经解决了 OSN 中谣言传播的问题;然而,只有少数作品 [7] 研究了多路 OSN 中的这个问题。我们把文学作品分为宏观文学作品和微观文学作品。一方面,宏观方法主要基于流行病模型[8]。然而,他们忽视了人类的多样性,这是准确建模谣言传播等现象的主要挑战。此外,这一类别的作品强调了所研究的因素对谣言传播的影响,但没有详细说明这些研究结果对制定谣言影响最小化(RIM)策略的影响。另一方面,微观方法则将大部分注意力集中在传播过程中的社会互动,即“谁影响了谁”。独立级联 (IC) 和线性阈值 (LT) 模型 [9] 是此类中最常见的模型。然而,这些模型的缺点在其简单的设计假设中已被明确认识到,例如排除了人类特征的几个方面。此外,一些学者[10,11]提供的证据表明,谣言的传播趋势与事实信息不同。 IC 或 LT 模型尚未考虑这一点。最后,大多数解决RIM的方法[12-20]没有考虑OSN的复用结构,并且不能将其直接应用于复用OSN中的谣言传播问题。因此,这项工作提出了一种谣言传播模型来描述这种现象并克服上述挑战,以及最大限度地减少其对 OSN 影响的解决方案。

     这项工作提出了一种与上述研究平行的方法,更多地关注个人如何传播谣言。因此,我们退后一步来分析和理解个人的行为以及他们在 OSN 中的社交互动如何影响谣言的传播。在此分析的基础上,我们提出了一种新颖的谣言传播模型,名为 HISB 模型,该模型考虑了多重 OSN 中的个人和社会行为。在此模型中,我们首先介绍多重 OSN 的模式,其中对 OSN 中的个人及其帐户进行了区分。随后,我们提出了一种针对阻尼谐振运动的谣言模拟的个体行为的表述。此外,我们在传播过程中纳入了个人的意见。此外,我们建立了多路复用网络每一层中个体之间的谣言传播规则。因此,我们提出了 HISB 模型传播过程,其中引入了新指标来准确评估通过多重 OSN 传播谣言的影响。基于这个模型,我们提出了针对 RIM 问题的真相运动策略(TCS)。 TCS选择最有影响力的节点,然后发起真相运动,以提高个人的认识并防止谣言的传播。该问题的解决方案是利用生存理论从网络推理问题的角度制定的。因此,我们提出了一种贪心算法,根据似然原理选择节点作为 TCS 的候选节点,保证了最优解的近似值在 63% 以内。进行实验在真实数据集上评估我们模型的性能和所提出的 RIM 策略的有效性。这些实验证明,该模型真实地描绘了谣言传播的演变过程,并证明它能够准确地突出人为因素的影响,正如之前的研究所证明的那样。此外,进行实验是为了展示我们的策略在最小化谣言影响方面的效率。

   总之,与之​​前的版本[1]相比,

    本文的贡献如下: • 我们提出了一种新颖的谣言传播模型,HISB 模型。与文献中提出的模型不同,所提出的模型考虑了人类个体和社会行为,从而可以真实地描述谣言的传播。我们证明 HISB 模型比经典模型更准确地再现了现实世界谣言传播的所有趋势。而且,根据以往的研究,HISB模型准确地凸显了人为因素对谣言传播的影响。 • 我们引入了真相运动策略(TCS),以最大限度地减少谣言影响。在这里,根据个人和社会行为选择最有影响力的节点,最有可能传播真相运动,以尽量减少谣言的影响。该问题的解决方案是利用生存理论从网络推理的角度制定的。与之前的工作相比,TCS 在单个和多重 OSN 的情况下在最小化谣言影响方面表现出更好的性能。 • 我们展示了所提出的解决方案的出色性能。在最好的情况下,TCS 的平均表现是,最有可能被谣言感染的人数减少了 69%。在最坏的情况下,我们的方法可以将谣言的影响平均降低 31%,而文献方法的第二好结果为 17%。此外,HISB模型可以帮助我们测试多种RIM策略,例如阻塞节点策略、阻塞链接策略或真理运动策略,这是经典模型无法做到的。本文的其余部分组织如下:第 2 节扩展了相关工作以及初步知识。 HISBmodel 谣言传播模型在第 3 节中描述。​​第 4 节提出了所提出的谣言影响最小化策略。第 5 部分显示了进行的实验结果。最后,本文的讨论和未来的工作在第 6 节中介绍。

2. Related work and preliminary knowledge

2.1. Related work

    在过去的几年中,人们对 OSN 中的谣言传播越来越感兴趣,并且提出了不同的方法来研究它。通过仔细审视现有文献,我们将作品分为宏观和微观两类。

2.1.1. Macroscopic approaches

   第一类主要基于流行病模型[8]来研究谣言传播问题。然而,由于这些模型是专门为口碑传播而设计的,因此一些研究[21,22]考虑了网络的拓扑特征,以使这些模型适应 OSN 传播的环境。最近的研究集中在人类个体和社会行为的作用;研究调查了不同人为因素在谣言传播过程中的影响。有几部作品专注于研究人类个体行为,例如遗忘和记忆[23-26]、犹豫[27]、不完整阅读[28]和个体教育[29]。其他工作则关注人类社会行为的影响,例如信任机制[30]、从众心理[31]以及社会强化[32]在网络行为传播中的作用。这些工作研究了不同因素对不同类型网络(例如“无标度网络”[33]和“小世界网络”[34])的影响。然而,这些模型都是宏观方法;他们认为所有用户都具有无法区分的特征,并且具有相同的影响他人的能力。

    此外,在人类行为和人类互动中观察到的超出我们想象的多样性和复杂性被忽视,这使得对谣言传播等现象进行建模变得具有挑战性。此外,谣言和流行病的传播是不同的,因为个人可以选择随时退出谣言传播过程;然而,在流行病中,感染过程相对被动。最后,由于其研究问题的宏观方法,用流行病模型研究 RIM 问题具有挑战性。

2.1.2. Microscopic approaches

    微观方法引起了人们对个体互动的更多关注,例如“谁影响了谁”。多年来,人们在微观方法中提出了多种模型;例子如下:(1)概率模型,例如著名的独立级联(IC)模型和线性阈值(LT)模型[9]或Galam模型[4]; (2)自然启发模型,例如能量模型[11]; (3) 概率推理模型[35]; (4)状态转换模型[36]。尽管如此,IC 和 LT 模型是此类中众所周知的模型,Jalili 和 Perc [37] 已经详细介绍了这些模型的传播过程。这些模型是不同信息扩散问题的里程碑,例如信息最大化问题,特别是 RIM。他们最初由[9]提出,并且提出了几种策略来最大程度地减少谣言的传播,并对这些模型进行了改进。一些工作[13-17]研究了阻止节点或链接策略以限制不良信息的传播。其他研究人员提出了一种可以对抗虚假(坏)运动的真相(好)运动[7,12,18–20,38]。因此,针对多活动传播模型提出了对 IC [18] 和 LT [19] 模型的一些改进。

   该方向的研究主要集中在设计限制谣言传播的策略,而很少关注传播模型。此外,这些模型仍然缺乏一些重要的细节,因为它们未能捕捉到某些方面,例如个人观点的传播。最后,这些策略是在封闭世界假设下提出的;然而,个人经常加入多个 OSN,谣言会同时在多个网络上传播。因此,所提出的 RIM 方法不能直接应用于多路 OSN 传播;此外,据我们所知,很少有研究[7]在多路 OSN 中研究这个问题。

2.2. Preliminary knowledge

   为了更好的清晰度和可读性,本节简要解释阻尼简谐运动和生存理论的概念,这些概念将在我们的建模假设中使用。

2.2.1. Damped harmonic motion

在力学和物理学中,阻尼谐振运动是一种周期性运动或振荡运动,通常被描述为与桌子上的水平弹簧相连的球。不动状态是平衡状态。当球从该状态移动时,它会拉伸弹簧。因此,恢复力与位移成正比。球以频率 ω 来回移动。阻尼简谐运动会经历摩擦,其中耗散力最终会以参数 β 抑制运动,直至不再发生振荡。因此,如果系统在线性恢复力和阻力的综合影响下运动,则运动由方程 [39] 描述

   其中 x(t) 是系统在时间 t 时的位置,β 是阻尼参数,ω 是运动的特征频率,δ 是确定 t = 0 时起点的运动相位,A0 是振荡幅度。

2.2.2. Survival theory

   生存理论是流行病领域广泛使用的数学工具,用于估计观察时间后事件发生的可能性。该工具首先由 Gomez-Rodriguez 和 Leskovec [35] 用于解决信息扩散问题,他们从网络推理的角度提出了信息扩散模型。他们利用生存理论开发了通用的加法和乘法模型,在这些模型下,可以通过利用其凸性来有效地解决网络推理问题。生存函数如下[40]

其中T是连续随机变量,表示感兴趣事件的发生时间; t 是指定常数。考虑到事件是个体感染病毒,生存函数表示个体在观察截止时间 t 之后在感染中幸存的概率。当F(t)是累积分布函数时,则概率密度函数可以给出如下

 

 T 分布的另一种表征由事件 h(t) 的危险函数或瞬时发生率给出,定义为

 方程的分子。 (4) 是事件在时间 t 之前尚未发生的情况下,在时间间隔 [t, t + dt] 内发生的条件概率。简化该表达式,h(t) 可以写为

因此,我们得到

如方程。 (5)显示了生存函数和风险率之间的关系,其中知道h(t)的值可以更容易地推导出S(t),式(5)。 (2) 可以用来估计累积分布函数如下

在这种情况下,研究的事件是谣言感染,其中为建议的策略定义了风险率函数。

3. Proposed rumor propagation model

     考虑到谣言传播模型在限制 OSN 谣言影响问题中的主导作用,本节的主要目标是提出一种传播模型,可以重现这种现象的现实趋势,并提供重要指标来评估谣言的影响。有效了解谣言的扩散过程并减少其影响。人性中存在的多样性使得他们在传播信息方面的决策能力变得不可预测,这是对这种复杂现象进行建模的主要挑战。因此,考虑人类个体和社会行为在谣言传播过程中的影响具有重要意义。因此,我们提出了一种谣言传播模型,该模型基于对多路 OSN 中用户行为及其社交互动的分析,称为 HISB 模型。与文献中提出的模型不同,该模型关注个人如何在 OSN 中传播谣言,而不是如何传播该信息。因此,该模型试图回答以下问题:“一个人什么时候会传播谣言?一个人什么时候会接受谣言?此人在哪个 OSN 中散布谣言?”。在这个模型中,我们引入了类似于阻尼简谐运动的谣言公式的个体行为。随后,我们在此过程中整合了个人的意见并考虑了社会影响。此外,我们建立了个体之间的人类社会互动规则,并强调识别个体传播谣言的网络层。因此,我们基于 HSIB 模型描述了谣言的传播过程,该模型的灵感来自于多路 OSN 中的真实场景。此外,该模型允许我们提出新的指标来评估谣言传播的影响;这些指标准确地反映了谣言的传播状态,以评估其影响。

3.1. Multiplex online social networks representation

   在文献中,OSN通常被认为是有向图或无向图G=(V,E),其中节点集合V代表用户;边集E表示个体之间的关系。然而,由于 OSN 的多样性,个人通常会同时加入多个 OSN,并且可以维护多个帐户。因此,信息不再局限于在单一网络上传播;事实上,它可以在OSN的复用结构中使用。因此,基于这个想法和文献[41,42]中提出的先前工作,我们定义了多路OSN。

定义 1. 具有 n 个网络的多重 OSN 是一个集合 Gn = (I, Gn ),其中 I = (V, C) 是图 1 中心表示的个体集合;对于每个个体,i ∈ I 由节点 v ∈ V 和一组特征 c ∈ C 表示。个体的特征定义了他们对谣言的响应。下一节对其进行了进一步定义(参见第 3.2 节)。集合 Gn = {G1 = (V, E1 ), G2 = (V, E2 ), ... 。 。 , Gn = (V, En )} 是一组 n 个图,其中 Gi = (V, Ei ) 是表示 OSN 的有向图;例如,在图 1 中,G3 = {G1 = (V, E1 ), G2 = (V, E2 ), G3 = (V, E3 )} 分别是 Instagram、Twitter 和 Facebook 网络,由有向网络表示图形。不失一般性,我们认为多路复用的每个网络具有相同数量的节点。如果某个节点 v ∈ Gi 不属于 Gj,我们可以将该节点作为孤立节点添加到 Gj 中,如图 1 中黑色所示。

图 1. 三 (3) 个在线社交网络的复用 G3 = (I, G3 )。该组个体显示在图的中心,其中每个个体可以在不同的 OSN 中拥有以黑色虚线表示的帐户;为了更清楚起见,我们仅对节点 v2、v3 和 v5 进行了说明。 G3 = {G1 = (V, E1 ), G2 = (V, E2 ), G3 = (V, E3 )} 分别是由有向图表示的 Instagram、Twitter 和 Facebook 网络。不失一般性,我们认为多路复用的每个网络具有相同数量的节点。因此,以黑色显示的节点是添加到每一层的孤立节点,因为个人在此 OSN 中没有帐户。

 

3.2. Individual behavior toward a rumor formulation

   这一部分根据文献工作对个人对谣言的行为进行了分析,并引导我们进行以下描述。在传播过程之初,谣言通常被认为是引人注目的,即使未经证实,人们也会被它所吸引。个人对谣言的吸引力最初很高,随后表现出逐渐下降的趋势[10,11]。此外,大多数谣言都有特定的时限,如果被官方驳斥或人们对它们失去兴趣,它们就会消失。此外,[29]的作者指出了个体教育的显着效果。因此,个体对谣言的背景知识(IBK)被定义为个体评价谣言可信度的能力;因此,它起着至关重要的作用。因此,关于谣言的 IBK 越大,人们对谣言失去兴趣的速度就越快。然而,由于犹豫机制(HM),个体最终可以在传播谣言之前拥有一段潜伏时间。这与个人对复活的谣言的怀疑程度有关[27]。此外,谣言可能会被 OSN 中的其他信息所掩盖,并且由于遗忘(FR)因素,个人可以停止并重新开始传播谣言。这个因素已经赵等人研究。 [23-26]在各种作品中;我们在这项工作中将其与个人对 OSN 的成瘾联系起来。我们声称在 OSN 上花费的时间越多,记住谣言的机会就越高。

图 2. 不同 ω、β 和 δ 值下个人对谣言的吸引力。该图显示了人为因素如何影响个人对谣言的吸引力趋势。 

   在分析 OSN 中的个体行为时,我们受到了符合行为描述的物理模型的启发。我们发现这样一个类比:个体对谣言的吸引力类似于偏离平衡位置的振荡系统。与个人对谣言的吸引力类似,运动的幅度在开始时很高,然后根据阻尼参数而减小。这种情况下的阻尼参数代表了关于谣言的 IBK(见图 2(a))。由于HM因素,个体在传播谣言之前的潜伏时间类似于系统的阶段(见图2(c))。最后,FR因子被类比为一个围绕其平衡位置振荡的系统;系统的振荡频率代表了用户对OSN的依赖程度(见图2(b))。该参数表示个体在遗忘和记忆阶段之间切换的周期。我们可以将个人对谣言的吸引力定义为:

  其中A(t)是个体在t时刻对谣言的吸引力,Aint是对谣言的初始吸引力,β代表IBK,FR因子ω是遗忘和记忆的周期,δ是对谣言的信任程度谣言的来源。为了适应实际场景中提出的公式,我们设置 δ′ = π /2 + δ。因此,个体传播谣言之前的潜伏时间随着δ的增加而增加。最后,对于个体吸引力的非负值,我们考虑 A(t ) = |A(t )|。个人对谣言的吸引力呈现如下:

为了证明我们的模型与文献中可用的作品的一致性,我们需要证明我们的模型符合之前提供的个体行为描述(命题1中总结)。

命题1:网络中谣言的影响力与FR和HM因子的依赖性越来越大,而IBK因子与谣言影响力之间的依赖性越来越小。

证明。为了验证上述命题,我们假设一个人传播谣言的概率越来越取决于他们对谣言的吸引力。因此,我们估计 φ(ω, β, δ),它是 A(t) 的原函数,代表一个人从听到谣言到失去兴趣期间对谣言的吸引力。给出如下

 我们注意到

 

因此,我们得到 ∀ω, β, δ > 0

最后,我们得到 

通过对 φ 对 ω、β 和 δ 求偏导数,我们得到

然后我们对偏导数 φω、φδ 和 φβ 的研究突出了 ω、δ 和 β 因素的影响。显然,φδ ≥ 0,∀ω、β 和 δ > 0。随后,我们分析了 φω > 0 且 φβ < 0 的条件。对 φω 的分析表明: 

 因此,对于 x ∈ [0, 1],我们设置 x = β/ω,并且 y = δ/ω。此外,我们假设 f (x) = (−1 + x2 + βx δ (1 + x2 ))(e2πx − 1) + 2π x(1 + x2)eπx。研究 f 表明 f′ > 0,这意味着 f 是增函数 ∀x ∈ [0, 1] 且 ∀β, δ > 0。此外,我们有 f (0) = 0 且 f(1) > 0 ;我们可以说 f 是正函数 ∀x ∈ [0, 1]。根据这个演示,可以得出结论

此外,对于 β > ω 和 ∀ω, β, δ > 0,我们有 φβ < 0。然而,对于 β < ω 和 ∀ω, β, δ > 0,我们必须证明 ωβ(e 2πβ ω − 1) + π (β2 + ω2)e πβ ω > 0。因此,设 x = β/ω,其中 x ∈ [0, 1];那么,我们假设 f (x) = x(e2πx − 1) + π (x2 + 1)eπx。研究 f 表明 f′ > 0,其中 f 是增函数 ∀x ∈ [0, 1]。此外,我们有 f (0) = 0 且 f(1) > 0,由此我们可以得出 f 是正函数 ∀x ∈ [0, 1]。根据这个论证,可以得出结论:如果 β < ω,则 φβ < 0 并且 ∀ω, β, δ > 0。 

    对 ∂φ(ω,β,δ) ∂ω 、∂φ(ω,β,δ) ∂β 和 ∂φ(ω,β,δ) ∂δ 的研究表明:首先,根据 (16) 和根据式(17),我们确认当∀ω, β, δ > 0时,φω为正。由此,我们可以得出结论:φ是ω的增函数。其次,分析表明,当∀ω、β、δ > 0 时,φβ 为负。据此,我们可以说 φ 是 β 的减函数。由于 φδ 为正,因此可以将 φ 视为 δ 的增函数。图 3 证实,当 β 值较低且 ω 和 δ 值较高时,可获得 φ(ω, β, δ) 的峰值。此外,我们可以看到β对下降趋势的影响更大,这符合IBK在传播过程中的重要性的假设。由此,我们可以证实命题1。

3.3. Individual opinion formulation

  在谣言传播过程中,不同人对同一谣言的识别程度不同;这种变化在 OSN 中的表现和传播方式不同。个人可以确认、反驳、质疑或讨论感兴趣的问题。谣言信念分类吸引了一些研究人员,并且各种工作提出了自动谣言信念分类的方法[43,44]。现有的谣言传播模型没有考虑这方面的问题; Bredereck 和 Elkind [45] 已经证明了它在谣言传播等现象中的重要作用。一般来说,谣言分为四类:支持、否认、质疑、中立。在这项工作中,我们采用加法模型来估计 Bv,即个体 v 对谣言的看法。每个观点都与一系列值相关联,其中 Bv ∈ [−∞, 0] 表示否认的响应,Bv ∈ [0, 10] 中立观点,Bv ∈ [10, 20] 质疑态度, Bv ∈ [20, ∞] 一个支持意见。这一提法是基于[31]中的从众行为对谣言传播的影响,表明大多数人表现出一种从众心理,这种心理会使人们盲目追随他人并借用他人的意见。然而,当个人多次收到相同的信息时,由于信息冗余,它对他们的影响可能不会像最初那样大[32]。因此,我们将个体v的观点定义如下:

其中Nv是个体v的邻居集合,n表示v从单个邻居接收到谣言的次数。

3.4. Rumor transmission rules

   本节建立了如何在多路 OSN 中传输谣言的规则,其中关注人类交互并强调回答以下问题:谣言何时发送?什么时候会被接受?它将被发送到多路复用的哪一层?因此,受[11,14,15]工作的启发,我们定义了两对节点之间的谣言传播规则。所提出的规则通过以下三个步骤进行评估:网络选择概率、谣言发送概率和谣言接受概率。给定具有 n 个网络 Gn = (I, Gn ) 的多路 OSN,我们定义了 Gn 第 k 层中两对节点 u 和 v 之间的谣言传输概率如下

 首先,网络选择概率估计节点u在复用Gn的第k层发送谣言的概率。节点度在复杂网络上发生或与复杂网络相关的许多过程中发挥着重要作用[37]。我们认为节点的入度代表了 OSN 中个体的权威[9]。我们假设一个人在 Gn 第 k 层发送谣言的概率越来越依赖于它的入度。因此,节点u选择Gn中第k个网络的概率定义如下:

  其中di in(u)指Gn第i层节点u的入度。然后,发送概率估计用户向其邻居发送谣言的机会。该概率很大程度上取决于人为因素(IBK、FR 和 HM)。用户对谣言越感兴趣,发送谣言的机会就越高。因此,我们将这个发送概率定义为 A(t)/Aint,其中节点 u 在时间 t 的谣言发送概率为

接受概率评估个人接受邻居谣言的机会。我们假设入度较高的节点有较大的影响其他节点的能力(权威)[9]。然而,他们不容易被影响;这就是所谓的名人效应。据此,我们在考虑Gn第k层发送者u和接收者v的影响后,定义一个平衡加权概率如下:

其中P是传播过程中的概率参数集。

3.5. HISBmodel propagation process

   基于上述分析和类比,本节介绍了多路OSN中基于HISB模型的谣言传播过程。让我们考虑加入由多重 Gn = (I, Gn ) 表示的多个 OSN 的 N 个个体的群体。在时间 t = 0 时,一组个体在 Gn 的不同层中传播谣言,并随机分配给每个节点 v 不同的信念;其余节点一无所知。在这个过程中,如果一个无知的人根据方程的概率接受谣言: (19),然后他们成为传播者并服从对谣言的行为,如方程(19)所示。 (9)。每次传播者接受谣言时,他对谣言的看法都会根据等式1更新。 (18)。一个人可能会收到多个谣言。然而,他们只能将每个已接受的谣言传播一次。当传播者对谣言的兴趣消退时,他们就会变得压抑,无法再参与传播过程。最后,当谣言流行度恶化时,传播过程就会结束。这被定义为R(t) 0,它可以进一步定义如下

 其中Ri(t)是每一层中所有个体考虑到其权威的累积吸引力。

   谣言流行度是我们的模型提出的一个新指标,它通过考虑每个人的影响来说明谣言的演变。由于个人在网络中拥有不同的权限,因此该指标可以提供谣言传播的准确状态。除了文献中的模型提供的经典指标,例如传播者数量的演变和谣言的最终规模(最后阶段的感染人数)之外,HISB模型还提供了新的指标来更精确地评​​估谣言谣言的演变以及更好地理解这一现象。该模型强调了个人意见的演变;因此,我们可以追踪对谣言持积极看法的人数的变化。持有负面意见的个人被认为不会助长谣言影响力的传播,相反则被认为参与了减少谣言影响的活动。我们通过考虑没有负面意见的感染者数量来评估谣言的影响;这个群体代表了谣言的信徒。这个新指标是我们提出策略以尽量减少谣言影响的动机的根源。我们的目标不仅是限制谣言的传播,还要最大限度地扩大不相信谣言的人数。所提议的策略将在下一节中介绍。

4. Rumor influence minimization strategy formulation

   本节介绍我们的策略,以尽量减少多路 OSN 中谣言的影响。首先,我们介绍了多路 OSN 中谣言影响最小化的问题。随后,我们利用生存理论从网络推理的角度描述了我们对问题的解决方案。最后,提出理论证明来说明所提出的解决方案的性能。

4.1. Problem formulation

  为了克服谣言的不利影响,先前的研究[14-17]提出了各种节点阻塞策略来限制谣言的传播。然而,这些策略引起了一些担忧;例如,[46]中的作者强调,如果阻塞时间超过某个阈值,那么 OSN 中个人的满意度就会降低。我们区分了一些研究这些策略中用户时间阻塞的作品,例如[14,15]。此外,在许多国家,在线社交网络策略中的封锁节点或内容被认为是对言论自由的侵犯。2因此,我们建议不要将个人排除在这些策略之外,而是暗示这一过程中的用户是该策略的主要参与者。将谣言的影响降到最低。在此背景下,我们考虑开展反谣言运动[7,18-20],以提高个人防止谣言传播并进一步限制谣言影响力的意识。在实际应用中,我们发现了几个网站,例如 Snoops、3 Emergent、4 和法国网站 Haoxbuster5,它们可以跟踪不同 OSN 中的谣言并分享谣言的事实。多项研究表明,虚假信息比事实信息传播得更快[2,47],因为人们可以更频繁地与虚假谣言互动。一项研究[47]调查了 Snopes 对 Facebook 谣言传播的影响,发现被该网站检测后,谣言传播率明显下降。

    尽管个体正在加入多个 OSN 并形成 OSN 的多重结构,但大多数处理 OSN 中谣言检测问题的研究 [43,44] 都是在单个网络中进行的。一般来说,Twitter 已成为收集和分析谣言的最佳数据源。因此,我们假设由于其他网络中缺乏信息,RIM策略只能在一个网络中执行。此外,由于谣言在传播一段时间后才被发现,在已经感染了一定比例的人后,想要阻止其传播也具有挑战性。因此,考虑到上述假设,我们将问题定义如下:考虑复用 OSN,Gn = (I, Gn )。我们假设在时间 tdet 时在网络的第 i 层检测到谣言。目标是选择 k 个人发起真相运动,以尽量减少相信谣言的人数。为了准确地选择所提出策略的候选者,我们利用生存理论来分析节点被感染的可能性。这一点之前已经详细讨论过。

4.2. Proposed solution

   我们将解决方案表述如下:检测到谣言后,我们将群体 V 分为两个集合 V = VB+ ∪ VB− ,其中 VB− 是持有负面意见的个体的集合,VB+ 其余群体。如前所述,我们的目标是通过从 VB+ 中选择 k 个最有影响力的节点来传播对谣言的负面意见,以提高个人的意识,以防止个人采纳谣言。因此,我们提出了一种加性生存模型,其中节点 u 被激活的概率是式(1)表示的传播概率之和。 (19)。因此,节点v被节点v感染的风险率为:

将 h(t) 代入等式中。 (7) 得出累积分布函数

 那么,节点被v感染的似然函数如下

 从方程。 (26),我们可以将任意数量的被感染节点的似然函数推广为

基于式(2)设计了贪心算法。 (27)在算法中提出。 1. 该算法的目标是通过从VB+中选择k个节点来传播对谣言的否认意见,从而最大化节点被真相运动感染的可能性。类似地,目标函数可以写为节点被谣言信徒感染的可能性的最小化。目标函数如下 

4.3. Analysis of the approximation ratio of the TCS algorithm

   本节讨论所提出算法的近似率。 RIM问题已被证明是一个NP难问题,因为单网络上的RIM问题是多路复用上RIM的特例;因此,最后一个问题也是 NP 困难的[41]。因此,我们需要证明所提出的算法保证了与最优解的近似率。因此,给定多重 OSN Gn = (I, Gn ),为了进一步清楚起见,我们记下 σ (A) = fA(t ) 节点在时间 t 被集合 A ∈ I 感染的似然函数。函数 σ (.) 的子模性提供了一种在 (1 − 1/e) 因子内获得问题算法近似值的极好方法。如果满足以下条件,我们可以说 σ (.) 是次模的:

  其中 A,B ⊂ I,A⊆B,v ∈B。换句话说,如果 σ 具有边际收益递减性质,则它是次模的。使用以下引理,我们可以证明函数 σ (.) 的子模性质。

4.4. Time complexity analysis 

 命题3.所提出的贪心算法的时间复杂度为O(nkN ̄ |E|),其中k << ̄ |E|。证明。我们认为所提出的算法是在多路复用中执行的 Gn = (I, Gn ),其中 |V | = N 是个体数量, ̄ |E|网络中的连接数。所提出的算法枚举了VB+集合中的所有个体并选择具有最高边际似然函数f的节点。因此,为了计算该函数,算法必须最多访问 VB+ 中的每个节点及其连接一次。这导致时间复杂度为 O(|V + B |+ ̄ |E| * n) = O( ̄ |E| * n)。随后,为了为每次 k 次迭代选择候选节点 u,我们需要在 VB+ 中对每个节点重复 f 的估计。通过考虑所有节点都被感染并包含在集合 VB+ 中的最坏情况,我们获得每次 k 迭代的时间复杂度为 O(N) 次。综合这些因素后,我们得出结论,我们提出的算法的总时间复杂度为 O(nkN ̄ |E|)。

5. Experiments

   在本节中,我们进行了实验来突出 HISB 模型的性能和 TCS 的效率。首先,我们将文献中的谣言传播模型与提出的谣言传播模型进行比较模型。随后,我们在我们的模型下研究了人为因素(IBK、FR 和 HM)对谣言传播的影响。这样做的目的是展示 HISB 模型的特征。其次,我们评估所提出的 RIM 策略与其他策略相比的性能。从 Facebook、Twitter 和 Slashdot [48] 检索了三个数据集,并且在这些实验中采用了三个 OSN(Facebook、Twitter 和 YouTube)[49] 的多重数据集,详细信息如表 1 所示。此外,该集合的数据集这些实验中使用了在政治敏感事件期间传播的推特谣言。该数据集包含 458 个有关“查理周刊袭击”事件的谣言和 284 个有关“弗格森袭击”的谣言。本节中的所有实验6均已使用 MATLAB 2017b 实现,并在运行 Linux 操作系统的服务器(配备 Intel Xeon 处理器 (34 GHz) 和 16 GB 内存)上执行。

5.1. HISBmodel performance

  我们的文献综述没有产生任何比较谣言传播模型重现这种现象的准确性的研究。此外,据我们所知,不存在验证信息扩散模型这一特性的正式方法。因此,我们提出了两组实验来突出 HISB 模型的性能。第一部分将概述 HISB 模型的传播过程,以说明 HISB 模型与经典模型和真实谣言传播模型相比的演化趋势。随后,我们证明了模型中 IBK、FR 和 HM 因素对谣言传播的影响与文献中的结果一致。

5.1.1. HISBmodel propagation process overview

图4. HISB模型的谣言传播趋势。它显示了 HISB 模型提供的新测量结果,以便更好地了解传播过程并限制谣言的影响。 

  在这部分实验中,我们讨论了所提出模型的传播过程。图 4 概述了 Twitter 上谣言传播的模拟。对于初始参数,人为因素被分配为随机均匀分布 β ε [0.2, 1.2]、ω ε [π /12, π ] 和 δ ε [π /24, π /2]。此后,随机选择十 (10) 个具有正面和负面意见的节点作为一组初始传播者。图4(a)说明了谣言流行度和传播者数量的演变。正如观察到的,两个图表都呈上升趋势,直到达到峰值然后下降。然而,可以观察到这些图的峰值并不是同时达到的。也就是说,谣言的热度高峰并不是指人数或传播者的最高程度,而是指吸引力的大小。

   人口的谣言。此外,我们在图4(b)中说明了HISB模型帮助我们展示了个体对谣言的意见比例(支持、否认、质疑和中立)的演变。此外,图4(c)显示了感染者和相信谣言的人的比例。这些人是具有支持、中立或质疑反应的受感染用户。我们认为持有负面意见的个人不会助长谣言影响力;事实上,它们减少了谣言的影响,而这一事实已被我们最小化谣言影响的策略所利用。

图5.HISB模型、传统模型和真实谣言传播之间的比较。 

   为了强调我们的模型与之前研究中的模型相比的效率,我们对 HISB 模型、IC 模型 [14,15]、LT 模型以及 Twitter 和 Facebook 上的 Epidemic 模型进行了模拟 [48],其中目的是比较谣言传播的趋势。因此,选择经典的SIR模型作为流行病模型的基线。据赵等人介绍。 [25],个体成为传播者的概率为0.8,个体成为抑制者的概率为0.2。对于IC模型,我们选择[14,15]的模型作为基线;这是考虑个体倾向的改进IC模型。节点 u 在时间 t 发送谣言的概率公式为 Psend u (t ) = p0 log(10+t) ,其中 p0 是初始发送概率。根据[9],节点v的接受概率为Pacc v = 1/dv,其中dv表示节点v的连接度。结果如图5(a)和(b)所示,其中提出了撒布器标准化密度的演变。

  此外,文献证明OSN中谣言传播的演化具有上升和下降的模式。这种图案没有呈现出稳定或简单的形状;它以快速的方式增长并以缓慢的波动方式衰退[10,11]。为了证实这一假设,我们在图 5(b)中展示了 Twitter [50] 上传播的关于“查理周刊袭击”7 和“弗格森袭击 8”的两个现实世界谣言的趋势,这些结果是我们细分后获得的将谣言的传播时间分成相等的时间间隔,并统计每个间隔内的传播者数量。由于这两个谣言的传播者数量不同,我们通过将它们除以最大值来对结果进行归一化。此外,这些结果被发现与[11]中在新浪微博中传播的两个现实世界谣言的趋势相似。

   实验结果表明:第一,流行病模型描述了谣言的传播同样经历了增长和下降阶段,并且呈尖峰趋势。其次,IC模型和LT模型仅模拟传播的上升阶段,因为假设个体一旦被激活(感染),它们就会保持这种状态。最后,所提出的模型代表了谣言传播的快速增长和缓慢下降,分两个阶段波动。 HISB模型和Epidemic模型以类似的方式描述谣言的传播;然而,这些模型之间的巨大差异可以凸显出来。与其他模型不同,HISB模型是专门为描述谣言传播而设计的,基于对OSN中人为因素在谣言传播中的作用的研究,以个体如何在OSN中传播谣言为中心。所提出的模型提出了新的指标,例如谣言流行度、谣言信徒数量以及个人观点的演变,使我们能够更好地了解谣言的传播,以便更好地评估这一过程。此外,所提出的模型允许我们测试不同的 RIM 策略,例如阻塞节点策略或真相活动策略(参见第 5.2 节),例如,LT 和 IC 在不更新的情况下无法执行相同的操作。此外,一些研究利用流行病模型研究了 RIM 问题,因为它采用宏观的方法来研究该问题。我们发现,尽管 HISB 模型比流行病模型更复杂,但所提出的模型提供了更好的方法来描述这一过程,提供了更好的特征来评估这种现象,并提出了一种最小化其影响的策略。因此,与 IC 模型、LT 模型和 Epidemic 模型相比,所提出的模型更真实地描述了谣言传播的模式。这些结果为我们模型再现谣言传播的性能和可靠性提供了额外的支持。

5.1.2. Impact of the human factors on the propagation of rumors

图6 人为因素β、ω、δ对谣言传播的影响。它说明了这些因素对谣言的流行程度和感染者比例的影响。 

   他的部分说明了 IBK、FR 和 HM 对 Twitter 上谣言传播的影响。因此,我们进行了三个实验,通过改变一个因素并固定其他两个因素来研究传播过程的演变。 ω、β 和 δ 的值根据研究的区间分配随机均匀分布值。我们随机选择了十 (10) 名初始传播者;随后,我们运行了 500 次模拟以避免随机性。图6显示了这些实验的结果,并说明了这些因素对谣言流行度以及感染者比例的影响。如图6(a)、(c)、(e)所示,谣言的热度不断上升,达到顶峰;这可以用传播者感染其他人的事实来解释。我们观察到一个下降阶段,直到达到零,这表明谣言的传播过程停止,直到消失。对于感染个体的比例,我们发现图6(b)、(d)和(f)中的感染个体比例呈增加趋势,直至接近稳定状态。总体而言,结果表明,这些因素对(1)谣言的流行程度、(2)传播速度和(3)感染个体的比例有显着影响。此外,我们发现与因子 ω 和 δ 相比,IBK 对谣言传播的影响更为显着。当β值较低时,谣言流行度达到最高值(见图6(a)),感染人数较多,传播时间较长(图6(b))。相反,当β值较高时,我们可以观察到谣言的流行度最低,感染人数较少,传播时间较短。与其他两个因素相比,发现β对谣言传播的影响比ω和δ更显着(见图6(c)-(f))。

图7 人为因素对谣言最终传播规模的影响。

图 7(a) 和图 7(b) 证实了这一观察结果,与 ω 和 δ 相比,可以看出 β 对谣言最终大小的显着影响,即符合命题1。然而,可以看出β不像ω和δ那样影响传播速度。我们还可以看到,对于低值,传播速度的 ω 和 δ 比高值更高,谣言传播范围更广。此外,图 7(c) 显示 ω 和 δ 对谣言的最终大小具有相同的影响。这些结果与命题 1 以及 IBK [29]、FR [23-26] 和 HM [27] 对谣言传播影响的研究结果一致。这些结果证明了所提出模型的理论假设的合理性和正确性。

5.2. Performance of the proposed strategy

   本节旨在评估我们的模型下所提出的影响最小化策略在表 1 列出的四个网络上的性能。用于比较的算法如下:

1. 结果中显示自然传播(NP),以说明这些算法之间的差异。

2、经典贪心算法(CGA)是一种根据节点入度递减顺序选择节点的基本算法。选择该算法作为基线来说明所提出策略的影响。

3. [14,15]的DRIMUX是一种阻塞节点策略,它利用生存理论根据似然原理选择最有可能被感染的节点。

4.[13]提出的链接删除策略(LBS)选择并删除网络中节点之间的相关链接,以最小化谣言的传播。

5. [12]的正向运动策略(PCS) 真实运动策略算法基于正向运动,以最小化难以破译的信息传播的影响。

6. [7] 的 LCAC 在 OSN 的多重结构中提出了真相运动策略。目标是选择最少数量的节点来发起反谣言活动,该活动可以针对多路 OSN 中大量重叠节点。

7. 真相竞选策略(TCS)是提出的谣言影响最小化策略。

  上面列出的大多数方法都在经典模型(IC 或 LT)上进行了测试;为了确保统一的环境,这些方法在 HISB 模型上进行了测试。值得一提的是,一些工作研究了多路OSN中的RIM,因此,不适合仅在多路OSN中进行比较。此外,由于我们的解决方案是为多路 OSN 设计的,因此在单个网络中执行它是该解决方案的一个特例。因此,我们在单个 OSN 传播中将 TCS 的性能与其他策略进行比较;随后,实验在多重 OSN 中进行。

5.2.1. Experiment setup

  为了更清楚起见,我们记录了被选为 RNSasT 目标的节点的比例以及相信谣言是 FRB 的个人的最终比例。注意,LBS策略的目的是去除节点之间的链接;因此,将要删除的链接数量设置为|E'| = RNSasT ∗ 〈k〉,其中 〈k〉 是网络中节点的平均度。受现实世界场景的启发,我们假设在传播的特定时间 t = tdet 后,谣言被检测到,RIM 策略开始。对于多路 OSN 的情况,我们假设在 Twitter 上检测到谣言,并且仅在这一层执行 RIM 策略。造谣者比例设定为0.2%N,不同意见随机抽取。各个参数分配有均匀的随机分布,以提供同质总体,避免算法结果中出现任何实验噪声,其中 ω ∈ [π /12, π ]、β ε [0.2, 1.2] 和 δ ε [π /24,π/2]。我们针对不同场景进行模拟,以测试算法在不同情况下的效率。这些实验随着谣言 tdet = {2, 4, 8, 12, 15} 的检测时间的变化而变化。检测时间是表示谣言检测方法性能的一种方式,其中 tdet = {2, 4} 表示早期检测,tdet = {8, 12} 表示中期检测,tdet = {15} 表示后期检测。阶段检测。然后,我们改变 RNSasT k = {5%, 10%, 15%, 20%} 来说明可用于策略的不同预算。 RNSasT 可用于表示维持 OSN 中用户的积极体验的阈值。每个模拟重复 500 次以避免随机性。实验结果如表 2 所示,说明了每种情况下的 FRB 值。

5.2.2. Results analysis and interpretation

 

图 8. Twitter 上的谣言 tdet = {2, 4, 8, 12, 15}(以虚线表示)的不同检测时间下,当 k = 15% 时,不同类型的策略对传播过程的影响。它说明了不同类型的策略对谣言流行度、感染节点数量以及相信谣言的个人数量的影响。 

   在解释我们的结果之前,有必要先说明一下引入不同RIM后谣言传播的趋势。为了避免冗余结果,我们选择一种算法来代表每个策略。阻塞节点策略选择DRIMUX; TCS 代表真相运动策略;我们选择 CGA 作为基准。我们在图 8 中展示了 Twitter 上三种算法(CGA、DRIMUX 和 TCS)的比较结果,其中 k = 15% 对于不同的检测时间。图8从左到右展示了三种策略在降低谣言影响方面的表现。图8(a)表示谣言流行度的演变,图8(b)显示感染者比例的趋势。图8(c)展示了谣言相信者比例的演变,这是准确反映谣言影响力的最重要指标。显然,策略推出后,谣言相信率大幅下降(见图8(c))。因此,TCS 在这些策略中呈现出最好的结果,因为选择最有可能影响其他人的节点来传播真相运动,然后是 DRIMUX 算法,阻止易感个体被感染。可以看出,在引入前期策略后,CGA与 TCS 相比,算法和 DRIMUX 的传播速度较慢。这可以用图8(a)和(b)来解释; TCS旨在提高个人的意识,显示听说谣言的人比例不断增加以及谣言的受欢迎程度。这一策略不会在早期减缓谣言的传播,而是阻止谣言的采用,以减少其长期影响。从上到下,实验展示了检测时间对 RIM 策略的影响。我们观察到 TCS 在早期检测中显着降低了谣言的影响,随后是 DRIMUX。然而,随着检测时间的增加,可以看出这三种策略在最小化谣言影响方面的性能有所下降。

图 9. OSN 复用中 k = 10% 且 tdet = 8 时不同类型策略对谣言传播过程的影响。它说明了不同类型的策略对谣言流行度以及多重 OSN 中相信谣言的人数的影响。 

此外,图 9 显示了三种策略在减少多路 OSN 中谣言影响方面的效率。从图 9(a)-(c)中可以看出,TCS 增加了多路传输所有层中的谣言流行度,从而补充了之前实验的结果。然而,可以看出,DRIMUX 和 CGA 仅在 Twitter 层降低了谣言的流行度,因为这些策略应用于该层。最后,结果表明,与多路 OSN 中的其他策略相比,所提出的策略在减少谣言影响方面呈现出最佳效果。

表2 不同场景下引入谣言传播策略后谣言最终相信者比例。 “ ”算法无法在此类数据集中执行。

   总体而言,表2表明,与后期检测相比,所有算法在谣言的早期检测中都显着降低了谣言的影响。同样,随着 RNSasT 值的升高,谣言的影响力也大幅下降。当RNSaT k = 5%和10%时,我们开始对单网络实验进行分析。可以看出,真相竞选算法(TCS 和 PTC)在三个网络的策略中表现最好,并且与中后期相比,在早期 tdet = 2, 4 时发现谣言时的影响显着降低。阶段检测 tdet = 8, 12, 15。这一观察结果可以通过以下事实来解释:TCS 启动最有影响力的节点来启动真相活动。因此,当谣言在早期被检测到时,即使 RNSasT 较低,所选择的节点也将显着有助于减少谣言的影响。结果,FRB在最后阶段减少。然而,在后期检测中,尽管TCS表现出更好的效果,但在Facebook或Slashdot的情况下,PTC的性能低于DRIMUX。此外,在这种情况下(Twitter 和 Facebook 网络),当 RNSasT 较小时,CGA、DRIMUX 和 LBS 具有更高的效率。这是因为,在RNSaT值较低的早期检测中,由于谣言并未感染大量节点,因此移除阻塞节点的链接会更有效。尽管如此,在早期检测中可以看出,LBS 的性能优于 DRIMUX。当 RNSasT k = 15% 和 20% 时,我们认为在 tdet = 2、4、8 的三个 OSN 策略中,TCS 具有更好的结果,其次是 DRIMUX,然后是 PTC。然而,在后期检测tdet = 12, 15时,我们可以看到DRIMUX在某些情况下具有最佳性能(见表2)。据推测,这一现象的解释是,当谣言在相对较晚的阶段被检测到时,它就已经感染了整个网络中很大一部分的节点,人们已经对谣言失去了兴趣。此外,阻塞链接策略似乎比阻塞节点策略效率低,因为在这种情况下大量节点被感染,并且阻塞链接并不能阻止谣言的传播。后期提高个人意识的策略效率较低,因为谣言的影响力很大。此外,由于 Slashdot 是最密集的网络,其次是 Twitter 和 Facebook,这可以通过每个节点的平均连接度来说明(参见表 1)。与其他网络相比,谣言在 Slashdot 中传播得更快。因此,这些网络的功能将通过放大真相运动的传播来改善 TCS 和 PTC 的结果。因此,TCS 在 Slashdot 的所有场景中都取得了最佳结果。然而,与 Twitter 和 Facebook 上的 DRIMUX 相比,我们观察到后期检测的性能相对较低。此外,对于多重 OSN 传播,表 2 中的结果表明,真相活动策略 TCS、PTC 和 LCAC 在所有场景中都比其他策略表现出明显更好的性能。由于 DRIMUX、LBS 和 CGA 在封闭世界假设下工作,因此它们并不是为减少多路 OSN 结构中的谣言影响而设计的。换句话说,阻塞一个网络中的节点并不会降低其在其他网络中的影响力;然而,其在其他网络中的活动将保持不变。因此,阻塞节点或链接策略仅在封闭世界假设下有效。此外,TCS 比 LCAC 和 PTC 具有更高的性能。与这两种方法相反,TCS 根据节点的特征和在网络中的权限来选择最有影响力的节点。HISB 模型。因此,我们可以得出结论,所提出的策略在最小化多路 OSN 中谣言的影响方面呈现出最佳结果。

5.2.3. Statistical analysis

  本节介绍统计分析,以巩固我们的研究结果,以深入了解人为因素在谣言影响最小化中的作用。分析结果如图 10 所示,说明了不同因素对发送/接受谣言数量的影响以及 TCS 根据人为因素选择的节点数量分布。为了获得这些结果,我们运行了 5000 次模拟;然而,这一次,每个节点的人为因素在每次模拟中都被随机分配了不同的值,以避免任何有偏差的结果。个体的特征值被分配为均匀随机分布,以提供同质群体,其中 ω ε [π /128, 2π ],β ε [0.02, 1.4],δ ε [π /128, π /2]。接下来,我们将每个因素的取值范围细分为10 0 个等间隔,并根据每个间隔统计每个节点发送/接受的谣言数量。由此,我们得到了人为因素(β、ω和δ)和节点度对发送/接受谣言数量的影响,分别如图10所示。采用类似的逻辑来说明人为因素的影响( β、ω、δ)和节点度对 TCS 选择的节点数量分布的人为因素影响。

图10 不同因素对TCS选择的节点数量和发送/接受谣言数量分布的影响。 

   首先,从图10(b)-(d)可以看出,人为因素不影响谣言的接受数量。这是谣言接受规则中最初假设的结果。然而,节点的度对接受的谣言数量有显着影响,反映了我们的谣言接受规则和关于网络中个人权威的假设(见第 3.4 节)。随着度节点的增加,接受的谣言数量也随之增加;当它达到某个峰值时,它会逐渐下降。这种现象的解释是,节点拥有的链接越多,接收谣言的机会就越大,从而接受更多的谣言。然而,节点的链接越多,节点在网络中的权威就会增加,这就会降低接受谣言的机会。这个结果符合我们关于用户权限在人类交互中的作用的最初假设。

   其次,在我们的设计假设中,谣言的发送概率与个体对谣言的吸引力有直接关系,并且受人为因素的影响很大。发送的谣言数量会随着个人被谣言吸引的程度而增加。我们发现发送的谣言数量与 ω 和 δ 之间的依赖性越来越大,而 β 与发送的谣言数量之间的依赖性却越来越小。此外,这个结果表明β对发送谣言的数量的影响比ω和δ更显着。这些结果与我们最初的假设、命题1中的理论证明以及5.1.2节中得到的实验结果一致;越多的人被谣言吸引,他们传播谣言的机会就越高。此外,还观察到发送谣言的数量对节点度的依赖性越来越大,因为如果节点具有更多的链接,则发送谣言的机会就更高。

   最后,图10(b)、(c)和(d)说明了人为因素对TCS所选节点的影响。据观察,具有低 β 值和高 ω 和 δ 值的节点最有可能被 TCS 选择。 TCS旨在选出最有影响力的节点来传播真相运动;如前所示,β 值较低且 ω 和 δ 值较高的节点最有可能发送谣言,因此最有可能被 TCS 选择。从图10(a)可以看出,TCS没有选择度数较高的节点。然而,随着节点度的增加,每个节点度区间TCS选择的节点数量也随之增加,达到峰值后逐渐减少。这个峰值出现在[35, 40]左右,这是最有可能接受谣言并影响其他用户的节点。该峰值取决于节点数量以及网络中节点度的分布。通常认为,度数较高的节点是网络中最有影响力的节点,因此最容易被 RIM 策略选择。然而,尽管高度节点在网络中拥有很大的权威,但由于名人效应,它们不太容易受到其他用户的影响[9,11]。因此,TCS 的目标是选择最容易被谣言感染、最有可能感染其他个体的节点来传播真相运动。

5.2.4. Discussion

   如上所述,所提出的方法已经在不同场景下的四个不同真实网络中进行了测试,并考虑了现实环境中的各种情况。此外,TCS 已与最新提出的方法进行了比较,这些方法在方法方面具有相似和不同的特征。实验结果证实,所提出的策略在单一和多重 OSN 的所有策略中呈现出最好的结果。对表 2 中获得的结果进行荟萃分析表明,在 Twitter、Facebook 和 Slashdot 网络的所有场景中,TCS 在减少谣言可能接触到的个人数量方面平均实现了 52%,而相比之下,TCS 的效果为 41%由 DRIMUX 达到。而在多路 OSN 中,TCS 实现了谣言影响的 71% 降低,其次是 LCAC 和 PTC 分别降低了 63% 和 52%,而 DRIMUX 在这种情况下仅实现了 12% 的性能。此外,在这些实验中,我们通过改变谣言的检测时间和预算引入了几种场景,说明了不同的情况。首先,谣言的检测时间代表了谣言检测方法的效率,反映了这些方法在短时间内检测谣言的性能。此外,我们为 RIM 算法设置了各种预算,这为 RIM 策略可以选择的个体数量设置了阈值。来自该场景的证据证明,当 tdet = 15 且 k = 5% 时,TCS 在最坏情况下表现最好,平均减少 31% 的个体数量,其中 DRIMUX 实现了在这方面取得了第二好的成绩,为 17%。在 tdet = 2 且 k = 20% 的最佳情况下,TCS 的平均性能降低了 69%,而 DRIMUX 获得了 41% 的影响。这些结果证实了所提出的策略在基于 HISB 模型准确选择目标节点以最小化单个网络中谣言的影响或考虑多重 OSN 方面的有效性。 TCS 选择候选节点的标准取决于个人基于人类特征及其社会互动影响其他用户的能力,这在第 5.2.3 节的统计分析中得到了证明。例如,TCS在选择目标节点的标准中并不偏向高度节点;但是,选择的节点是基于最有影响力的节点,这些节点很容易被感染并感染其他节点。

6. Conclusions and future work

   考虑到在线社交网络(OSN)上谣言传播对社会造成的威胁,这项工作强调了解决 OSN 中谣言传播问题的必要性并提出了解决策略。它的重点是设计一个现实的谣言传播模型以及限制谣言的传播。因此,我们提出了一种基于个人和社会行为的多重 OSN 上的新型谣言传播模型,称为 HISB 模型。该模型考虑了各种人为因素,例如个人意见、社会影响和行为。基于该模型,我们提出了一种真相运动策略(TCS),从使用生存理论的网络推理的角度最小化多路 OSN 中谣言的影响。该策略选择最有影响力的节点,然后发起真相运动,以提高个人意识并防止谣言传播。因此,我们提出了一种基于似然原理的贪心算法,保证了最优解的近似值在 63% 以内。我们在真实数据集上系统地进行了实验,以评估我们模型的性能并衡量所提出的影响最小化策略的有效性。首先,结果表明,我们的模型比其他模型更真实地描述了谣言传播的演变,因为它再现了文献中提到的谣言传播的所有趋势和现实世界的谣言传播。此外,实验表明,所提出的模型根据文献工作准确地突出了人为因素的影响。其次,比较分析表明,与文献中的其他方法相比,我们的策略在最小化谣言影响方面是有效的。在最好的情况下,这些结果表明,所提出的方法可以将最有可能被谣言感染的人数平均减少 69%。在最坏的情况下,我们的方法可以将谣言的影响平均降低 31%,而文献方法的第二好结果为 17%。这些结果证实了所提出的基于 HISB 模型准确选择目标节点的策略的效率,可以最小化单个网络中谣言的影响或考虑多重 OSN。 TCS选择候选节点的标准在于个体基于人类特征和社会互动影响其他用户的能力。

    对于未来的工作,我们正在考虑根据 OSN 的心理和社会学研究,从真实的用户个人资料信息中估计人为因素,以获得准确的结果。我们提出对该模型的传播过程进行改进,以引入针对突发新闻谣言的模型。此外,我们考虑在谣言影响最小化策略中引入社区结构等网络特征的拓扑结构,以获得更好的结果。

  • 4
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值