滤波跟踪matlab代码
文章平均质量分 79
滤波跟踪matlab代码
天天Matlab科研工作室
:某大厂资深算法工程师,从事Matlab算法仿真工作10年,擅长智能优化算法、神经网络预测、机器学习、信号处理、元胞自动机、图像处理、路径规划、无人机、无线传感器网络、车间调度、生产调度等多种领域的Matlab仿真,更多仿真源码、算法改进、Matlab项目和期刊发表可私信合作。
展开
-
【滤波跟踪】基于卡尔曼滤波的永磁同步电机无位置传感器矢量控制matlab仿真
永磁同步电机(PMSM)因其高效率、高功率密度和良好的动态性能等优点,在工业自动化、新能源汽车等领域得到了广泛应用。传统的 PMSM 矢量控制策略需要使用位置传感器来获取转子位置信息,这增加了系统成本、复杂性和可靠性风险。近年来,无位置传感器矢量控制技术受到了广泛关注,其通过观测器或滤波器估计转子位置,有效降低了系统成本和复杂性。本文将介绍一种基于卡尔曼滤波的 PMSM 无位置传感器矢量控制方案。卡尔曼滤波器卡尔曼滤波是一种线性递归滤波器,它利用系统模型和测量信息对系统状态进行最优估计。原创 2024-05-26 23:11:22 · 317 阅读 · 0 评论 -
【滤波跟踪】基于卡尔曼滤波实现航路跟踪,波门显示附matlab代码
在航空、航海、机器人等领域,实时跟踪目标位置并进行精确控制至关重要。传统方法往往依赖于简单的预测模型,无法有效地处理噪声干扰,导致跟踪精度下降。而卡尔曼滤波器作为一种强大的状态估计方法,能够有效地融合传感器数据和系统模型,提高跟踪精度,并提供更可靠的估计结果。本文将详细介绍如何利用卡尔曼滤波器实现航路跟踪,并提供相应的代码和示例,以帮助读者更好地理解和应用这一技术。1. 卡尔曼滤波器原理卡尔曼滤波器是一种递归算法,它利用系统模型和观测数据,对系统状态进行最优估计。原创 2024-05-25 23:30:39 · 678 阅读 · 0 评论 -
【SOC估计】基于扩展卡尔曼滤波器实现锂离子电池充电状态估计附matlab代码和报告
锂离子电池作为现代电子设备的核心能量来源,其剩余电量(SOC)的准确估计至关重要。SOC估计技术可以有效地预测电池剩余电量,避免电池过度充放电,延长电池寿命,并提高系统安全性。近年来,基于扩展卡尔曼滤波器(EKF)的SOC估计方法因其精度高、鲁棒性强而受到广泛关注。1. 锂离子电池模型准确的电池模型是进行SOC估计的基础。常用的锂离子电池模型包括:等效电路模型 (ECM): 该模型使用等效电路模拟电池的电化学行为,通过电路参数的变化来反映电池的充放电状态。原创 2024-05-25 23:20:41 · 288 阅读 · 0 评论 -
【滤波跟踪】基于当前统计模型无迹卡尔曼滤波CSUKF实现目标跟踪附matlab代码
目标跟踪是计算机视觉和信号处理领域中一个重要的研究方向,其目的是在视频序列或图像序列中识别和跟踪目标物体,获取目标的位置、速度、姿态等信息。在各种应用场景中,目标跟踪技术都发挥着关键作用,例如自动驾驶、人机交互、视频监控等。卡尔曼滤波器是一种经典的线性状态估计方法,在目标跟踪领域得到了广泛应用。然而,传统的卡尔曼滤波器假设系统模型是线性的,无法处理非线性系统,而实际应用中大多数系统都具有非线性特性。为了解决这一问题,无迹卡尔曼滤波 (Unscented Kalman Filter, UKF) 应运而生。原创 2024-05-25 14:29:48 · 341 阅读 · 0 评论 -
【滤波跟踪】基于扩展卡尔曼滤波EKF与无迹卡尔曼滤波UKF实现非线性状态、参数估计附matlab代码
在许多工程领域,例如目标跟踪、机器人导航和经济预测,我们经常需要估计系统的状态和参数。然而,由于噪声、非线性模型和不完全观测的存在,直接测量通常无法准确地反映系统状态和参数的真实值。滤波跟踪技术应运而生,它利用系统模型和测量数据,对系统状态和参数进行估计,并随着时间的推移不断更新估计值。卡尔曼滤波 (Kalman Filtering) 是一种广泛应用于线性系统状态估计的递归算法。然而,当系统包含非线性模型时,传统的卡尔曼滤波不再适用。原创 2024-05-25 14:09:33 · 307 阅读 · 0 评论 -
【滤波跟踪】基于扩展卡尔曼滤波(EKF)、无迹卡尔曼滤波(UKF)及改进无迹卡尔曼滤波(MAUKF)算法实现滤波跟踪附matlab代码
1. 引言滤波跟踪作为目标跟踪领域的重要组成部分,旨在利用传感器获取的噪声数据对目标状态进行估计,并对目标轨迹进行预测。近年来,随着非线性系统的广泛应用,传统的线性滤波方法已无法满足实际需求,因此非线性滤波方法的研究成为热点。扩展卡尔曼滤波(EKF)和无迹卡尔曼滤波(UKF)是两种常用的非线性滤波方法,它们在目标跟踪领域得到了广泛应用。然而,EKF 算法的精度依赖于系统的线性化,而 UKF 算法在高维状态空间中可能会出现滤波精度下降的问题。原创 2024-05-22 11:59:56 · 362 阅读 · 0 评论 -
【滤波跟踪】基于轨迹集的扩展目标泊松多伯努利混合 (PMBM) 跟踪器matlab实现
多目标跟踪 (MTT) 旨在从传感器数据中估计多个目标的状态,例如位置、速度和大小。在现实世界应用中,目标往往表现出扩展性,即它们在空间中占据一定范围,而非简单的点目标。这种扩展性在雷达、声呐和计算机视觉领域中十分常见,例如,追踪车辆、飞机或人群等。扩展目标跟踪 (EOT) 的目标是估计目标的空间扩展以及其运动状态。与点目标跟踪相比,EOT 增加了对目标形状、大小和方向的估计,从而提供了更全面的信息。原创 2024-05-21 18:43:20 · 924 阅读 · 0 评论 -
【信息融合】基于多模型多传感器概率数据关联算法IMMMSPDA实现多传感器多目标数据融合附Matlab代码
随着传感器技术的快速发展,多传感器系统在各个领域得到了广泛应用。多传感器系统能够提供更全面、更准确的信息,但同时也带来了数据融合的挑战。如何有效地融合来自多个传感器的数据,以实现对目标的准确跟踪和识别,是多传感器数据融合领域的核心问题。传统数据关联算法的局限性传统的概率数据关联算法(PDA)主要针对单目标跟踪问题,无法有效处理多目标场景。而多模型概率数据关联算法(MMPDA)虽然能够处理多目标,但其假设目标模型是已知的,无法应对目标模型不确定性的情况。原创 2024-05-21 12:59:00 · 606 阅读 · 0 评论 -
【滤波跟踪】基于卡尔曼滤波对GPS定位直线精确追踪附matlab代码
在许多应用场景中,例如自动驾驶、机器人导航和无人机控制,需要对目标的运动轨迹进行精确的跟踪。GPS定位技术能够提供目标的经纬度信息,但由于信号干扰、多路径效应等因素,GPS数据往往存在噪声和误差,直接使用原始GPS数据进行轨迹跟踪会导致轨迹波动和漂移,难以满足精度要求。卡尔曼滤波是一种强大的信号处理技术,能够有效地滤除噪声,估计目标的真实状态。本文将探讨如何利用卡尔曼滤波对GPS定位数据进行滤波处理,实现对目标直线运动轨迹的精确追踪。1. 卡尔曼滤波原理。原创 2024-05-20 21:29:51 · 805 阅读 · 0 评论 -
【姿态估计】基于欧拉角法实现卫星姿态误差航向角 俯仰角 横滚角估计附Matlab代码
在卫星姿态控制系统中,准确估计卫星姿态误差是至关重要的。姿态误差是指卫星实际姿态与期望姿态之间的偏差,通常用航向角、俯仰角和横滚角来表示。本文将介绍一种基于欧拉角法的姿态误差估计方法,该方法可以有效地计算出卫星姿态误差的三个角度。1. 欧拉角法简介欧拉角法是一种常用的姿态描述方法,它使用三个旋转角度来描述刚体在三维空间中的姿态。常用的欧拉角定义有三种:ZYZ顺序: 绕 Z 轴旋转 �ψ 角,然后绕新的 Y 轴旋转 �θ 角,最后绕新的 Z 轴旋转 �ϕ 角。原创 2024-05-20 17:15:12 · 985 阅读 · 0 评论 -
【SLAM】基于平方根无迹卡尔曼滤波PHD-SLAM算法实现机器人滤波跟踪附matlab代码
1. 引言同步定位与地图构建 (SLAM) 旨在使机器人能够在未知环境中同时构建环境地图并确定自身位置。在实际应用中,机器人通常需要跟踪多个目标,例如在仓库中跟踪多个货物或在人群中跟踪多个行人。传统的SLAM算法通常假设目标数量已知,而现实场景中目标数量往往未知且动态变化。为了解决这一问题,概率假设密度滤波 (PHD) 滤波器被引入到SLAM领域,形成了PHD-SLAM算法。PHD-SLAM算法通过估计目标状态的多目标后验概率密度函数 (PDF) 来跟踪多个目标,无需事先知道目标数量。原创 2024-05-19 23:45:07 · 603 阅读 · 0 评论 -
【信号去噪】基于平方根容积卡尔曼滤波CKF,无迹卡尔曼滤波UKF,扩展卡尔曼滤波EKF实现信号去噪附matlab代码
在现实世界中,采集到的信号往往受到噪声的污染,这会严重影响信号的分析和处理。因此,信号去噪成为信号处理领域中一项重要的研究课题。卡尔曼滤波器作为一种经典的信号处理方法,在去噪方面有着广泛的应用。本文将介绍三种基于卡尔曼滤波器的信号去噪方法:平方根容积卡尔曼滤波(CKF)、无迹卡尔曼滤波(UKF)和扩展卡尔曼滤波(EKF),并分析其优缺点。1. 卡尔曼滤波器概述卡尔曼滤波器是一种递归的估计方法,用于估计线性系统中状态变量的最佳估计值。原创 2024-05-19 22:37:10 · 597 阅读 · 0 评论 -
【滤波跟踪】基于无迹卡尔曼滤波估计PMSM的位置与转速附matlab代码
永磁同步电机(PMSM)作为一种高效节能的电机类型,在工业自动化、新能源汽车等领域得到广泛应用。PMSM 的控制系统中,精确的转速和位置信息是实现高性能控制的关键。然而,由于传感器噪声、负载变化等因素的影响,直接从传感器获取的转速和位置信息往往存在误差。为了提高 PMSM 控制系统的精度和鲁棒性,需要采用有效的滤波方法对传感器数据进行处理,以获得更精确的转速和位置估计。无迹卡尔曼滤波 (UKF)无迹卡尔曼滤波 (UKF) 是一种非线性滤波算法,它利用无迹变换 (UT) 来近似非线性系统的概率分布。原创 2024-05-19 21:58:10 · 599 阅读 · 0 评论 -
【信号融合】基于卡尔曼滤波器和3种不同的多边算法(最小二乘 递归最小二乘 梯度下降法)实现UWB+IMU传感器融合附Matlab代码
近年来,随着无线通信技术的不断发展,超宽带 (UWB) 技术凭借其高精度、抗多径干扰能力等优势,在定位导航领域得到了广泛应用。然而,UWB定位系统在遮挡环境下易受影响,无法提供可靠的姿态信息。惯性测量单元 (IMU) 则可以提供高频的姿态信息,但其存在累积误差问题。为了克服各自的局限性,本文提出了一种基于卡尔曼滤波器和三种不同多边算法 (最小二乘、递归最小二乘、梯度下降法) 的 UWB+IMU 传感器融合方法,实现高精度、鲁棒的定位和姿态估计。一、引言。原创 2024-05-16 22:53:03 · 850 阅读 · 0 评论 -
【滤波跟踪】拓展卡尔曼滤波实现姿态估计附matlab代码
姿态估计是机器人学、计算机视觉和航空航天等领域的重要研究方向,其目的是确定物体或系统在空间中的方向。在实际应用中,传感器噪声、非线性运动模型以及外部干扰等因素都会影响姿态估计的精度。为了解决这些问题,滤波跟踪技术应运而生,其中拓展卡尔曼滤波 (Extended Kalman Filter, EKF) 作为一种经典的非线性滤波算法,在姿态估计领域得到了广泛应用。拓展卡尔曼滤波原理卡尔曼滤波是一种递归算法,它利用系统模型和观测数据来估计系统状态。对于线性系统,卡尔曼滤波能够提供最优估计。原创 2024-05-16 22:40:47 · 850 阅读 · 0 评论 -
【滤波跟踪】粒子滤波PF,无迹粒子滤波UPF,卡尔曼滤波KF,扩展卡尔曼滤波EKF附matlab代码
滤波跟踪是信号处理和控制领域的重要研究方向,其目的是利用噪声观测数据来估计系统状态。在实际应用中,系统状态方程往往是非线性、非高斯分布的,传统的线性滤波方法如卡尔曼滤波(KF)难以有效处理。为了解决这一问题,近年来涌现出许多非线性滤波算法,其中粒子滤波(PF)和无迹粒子滤波(UPF)是两种重要的代表性算法。本文将对粒子滤波、无迹粒子滤波、卡尔曼滤波和扩展卡尔曼滤波进行详细介绍,并比较它们的优缺点。1. 卡尔曼滤波 (KF)原创 2024-05-16 22:03:59 · 360 阅读 · 0 评论 -
【滤波跟踪】基于平方根容积卡尔曼滤波在机器人手臂运动跟踪中的应用附matlab代码
机器人手臂运动跟踪是机器人学领域的核心问题之一,其应用范围涵盖工业自动化、医疗辅助、服务机器人等多个领域。在实际应用中,机器人手臂的运动状态往往受到噪声干扰,例如传感器误差、环境变化等,这给精确跟踪带来了挑战。为了解决这一问题,卡尔曼滤波技术被广泛应用于机器人手臂运动跟踪,其中平方根容积卡尔曼滤波(Square Root Unscented Kalman Filter,SRUKF)因其优越的性能而备受关注。1. 问题描述机器人手臂运动跟踪的目标是根据传感器数据估计手臂的姿态、位置和速度等状态变量。原创 2024-05-15 22:41:43 · 1066 阅读 · 0 评论 -
【信号去噪】基于(标准、扩展、无味)卡尔曼滤波器实现呼吸信号处理,包括降噪、状态估计Simulink 实现
呼吸信号是反映人体生命活动的重要生理指标,在医学诊断、疾病监测和健康评估等方面具有重要意义。然而,呼吸信号在采集过程中容易受到噪声干扰,影响后续分析和应用。因此,对呼吸信号进行降噪和状态估计是呼吸信号处理的关键步骤。卡尔曼滤波器是一种经典的线性状态估计算法,它能够根据观测数据和系统模型对系统状态进行最优估计。近年来,卡尔曼滤波器被广泛应用于呼吸信号处理领域,取得了良好的效果。卡尔曼滤波器是一种有效的方法,可以用于呼吸信号的降噪和状态估计。原创 2024-05-13 18:21:41 · 744 阅读 · 0 评论 -
【滤波跟踪】基于卡尔曼滤波kalman实现飞行器目标跟踪附Matlab代码和报告
飞行器目标跟踪是计算机视觉领域的重要研究方向之一,其目的是在视频序列中准确地估计飞行器的运动状态,包括位置、速度、加速度等。卡尔曼滤波 (Kalman Filter) 是一种经典的时域滤波算法,在目标跟踪领域得到了广泛的应用。本文将介绍基于卡尔曼滤波实现飞行器目标跟踪的方法,并对其实现过程进行详细阐述。卡尔曼滤波是一种有效且实用的目标跟踪算法,在飞行器目标跟踪领域得到了广泛的应用。本文介绍了基于卡尔曼滤波实现飞行器目标跟踪的方法,并对其实现过程进行了详细阐述。原创 2024-04-22 11:22:02 · 1029 阅读 · 0 评论 -
【信息融合】基于卡尔曼滤波结合矩阵加权、加权平均、标量加权实现多传感器滤波跟踪和信息融合附Matlab代码
本文介绍了一种基于卡尔曼滤波结合矩阵加权、加权平均、标量加权实现多传感器滤波跟踪和信息融合的方法。该方法首先对各个传感器进行独立的卡尔曼滤波处理,然后根据不同传感器的权重进行加权融合,最后得到最终的滤波结果。该方法能够有效地提高多传感器系统的跟踪精度和鲁棒性。原创 2024-04-22 11:10:05 · 990 阅读 · 0 评论 -
【滤波跟踪】基于3D 空间中的方位角观测分布式目标状态估计算法HCMCI-KF matlab复现
协作运动估计是多传感器系统中的一项重要任务,它涉及估计多个目标的运动参数。在许多应用中,例如目标跟踪和导航,传感器只能测量目标的测向。因此,基于测向的协作运动估计已成为一个活跃的研究领域。现有的大多数基于测向的协作运动估计方法都使用扩展卡尔曼滤波器 (EKF) 或无迹卡尔曼滤波器 (UKF) 来估计运动参数。然而,这些方法通常会受到测量噪声和运动模型不确定性的影响。原创 2024-04-14 13:55:42 · 743 阅读 · 0 评论 -
扩展目标泊松多伯努利混合 (PMBM) 跟踪器matlab复现
在计算机视觉和目标跟踪领域,扩展目标泊松多伯努利混合 (PMBM) 跟踪器是一种先进的技术,用于在复杂场景中跟踪多个目标。它通过将目标建模为泊松分布的混合,实现了对目标数量不确定性的处理,同时利用多伯努利过程来描述单个目标的生存和观测概率。PMBM 跟踪器的原理PMBM 跟踪器基于以下假设:场景中的目标数量服从泊松分布。每个目标的状态由马尔可夫链表示。目标的观测概率由多伯努利过程描述。PMBM 跟踪器通过维护一组粒子来表示目标状态的后验分布。原创 2024-04-12 16:01:37 · 427 阅读 · 1 评论 -
【组合导航】基于卡尔曼滤波残差实现组合导航系统故障诊断附Matlab代码
组合导航系统融合了多种传感器信息,提高了导航精度和可靠性。然而,传感器故障会导致导航系统性能下降甚至失效。因此,故障诊断对于组合导航系统至关重要。本文提出了一种基于卡尔曼滤波残差的组合导航系统故障诊断方法。该方法利用卡尔曼滤波的残差序列,通过统计分析和阈值设置,检测传感器故障。仿真结果表明,该方法能够有效检测传感器故障,并具有较高的灵敏度和鲁棒性。引言组合导航系统将惯性导航系统(INS)、全球导航卫星系统(GNSS)、激光雷达等多种传感器信息融合在一起,提高了导航精度和可靠性。原创 2024-03-28 13:11:52 · 690 阅读 · 0 评论 -
【滤波跟踪】基于卡尔曼滤波实现UWB追踪无线时钟同步误差附Matlab代码
超宽带(UWB)技术是一种短距离、高带宽的无线通信技术,具有穿透力强、定位精度高等优点。在UWB系统中,时钟同步是保证系统正常工作的关键技术。本文提出了一种基于卡尔曼滤波的UWB追踪无线时钟同步误差的方法。该方法利用卡尔曼滤波的预测和更新机制,实时估计时钟同步误差,并通过反馈机制对时钟进行动态调整,从而提高UWB系统的时钟同步精度。原创 2024-03-24 23:51:52 · 663 阅读 · 0 评论 -
【航迹关联】基于JPDA数据关联算法实现两个匀速运动目标点迹与航迹关联(含RMSE)附Matlab代码
1. 概述数据关联是多目标跟踪中的关键技术,用于将传感器测量与目标航迹关联起来。JPDA(联合概率数据关联)算法是一种广泛使用的多目标数据关联算法,它考虑了目标状态的不确定性和测量噪声,可以有效地解决复杂场景下的数据关联问题。2. 问题描述给定两个匀速运动目标的点迹测量值和航迹信息,需要使用 JPDA 算法实现点迹与航迹的关联,并计算关联后的均方根误差(RMSE)。原创 2024-03-11 16:55:41 · 643 阅读 · 0 评论 -
【滤波跟踪】基于Huber函数和最大相关熵的抗差滤波算法实现GNSS导航定位粗差处理结合卡尔曼滤波算法对比附matlab代码
全球导航卫星系统(GNSS)在导航定位领域有着广泛的应用,但其观测数据不可避免地会受到各种噪声和粗差的影响。粗差的存在会严重影响导航定位的精度和可靠性,因此对其进行有效处理至关重要。本文提出了一种基于Huber函数和最大相关熵的抗差滤波算法,并将其与卡尔曼滤波算法进行对比,以实现GNSS导航定位粗差处理。原创 2024-03-11 16:44:30 · 1680 阅读 · 0 评论 -
【姿态解算】基于扩展卡尔曼滤波EKF实现姿态解算附Matlab代码
姿态解算是惯性导航系统(INS)中一项关键技术,它能够根据惯性传感器(如陀螺仪和加速度计)的测量值,估计载体的姿态信息。姿态解算算法有很多种,其中扩展卡尔曼滤波(EKF)是一种广泛使用的算法,因为它能够同时处理非线性系统和高斯噪声。EKF算法原理EKF算法是一种非线性滤波算法,它将卡尔曼滤波算法扩展到非线性系统。EKF算法的基本原理如下:**状态预测:**根据上一时刻的状态估计和系统模型,预测当前时刻的状态。**协方差预测:**根据上一时刻的协方差估计和系统模型,预测当前时刻的协方差。原创 2024-03-11 16:36:01 · 488 阅读 · 0 评论 -
多源信息融合理论及应用matlab代码
在当今信息爆炸的时代,人们面临着海量的信息,如何从这些信息中提取有价值的信息并做出正确的决策成为一项重大挑战。多源信息融合技术应运而生,它是一种将来自多个来源的信息进行综合处理,以获得更准确、可靠和全面的信息的理论和方法。多源信息融合理论多源信息融合理论主要包括以下几个方面:**信息源模型:**描述信息源的特征,如可信度、可靠性、相关性等。**融合算法:**将来自不同信息源的信息进行综合处理的方法,常见的算法包括贝叶斯推理、证据理论、模糊逻辑等。原创 2024-03-09 22:54:56 · 820 阅读 · 0 评论 -
【故障诊断】基于粒子滤波PF实现故障诊断附Matlab代码
故障诊断是工业系统中至关重要的一项任务,它可以帮助快速识别和定位系统中的故障,从而减少停机时间和维护成本。粒子滤波 (PF) 是一种强大的贝叶斯滤波算法,它可以有效地估计非线性、非高斯系统的状态。本文将介绍如何使用 PF 实现故障诊断。粒子滤波概述粒子滤波是一种蒙特卡罗方法,它使用一组称为粒子的随机样本来近似后验概率分布。对于状态空间模型:其中:x_k 为时刻 k 的状态u_k 为时刻 k 的控制输入w_k 为过程噪声y_k 为时刻 k 的观测值v_k 为观测噪声。原创 2024-03-01 12:19:46 · 952 阅读 · 0 评论 -
【组合导航】基于卡尔曼滤波实现IMU+GNSS两种传感器组合导航附Matlab代码
在现代导航系统中,惯性导航系统(INS)和全球导航卫星系统(GNSS)是两种最常用的传感器。INS利用惯性传感器(加速度计和陀螺仪)提供连续的高频导航信息,而GNSS利用卫星信号提供绝对的位置和时间信息。然而,这两种传感器都有各自的优点和缺点,因此将它们组合起来可以充分发挥各自的优势,提高导航系统的整体性能。原创 2024-02-23 22:54:37 · 891 阅读 · 0 评论 -
【目标定位】基于卡尔曼滤波实现目标定位附Matlab代码
目标定位是计算机视觉领域中的一项重要任务,其目的是估计图像或视频序列中目标的位置和状态。目标定位技术广泛应用于自动驾驶、机器人导航、人脸识别、运动跟踪等领域。卡尔曼滤波是一种用于估计动态系统的状态的递归滤波器。它由鲁道夫·卡尔曼于1960年提出,是目前最常用的状态估计方法之一。卡尔曼滤波的基本原理是利用系统状态的先验信息和观测信息来估计系统状态的后验概率分布。原创 2024-02-07 21:36:16 · 781 阅读 · 0 评论 -
【目标定位】基于扩展卡尔曼滤波EKF实现GPS-IMU组合定位附Matlab代码
本文提出了一种基于扩展卡尔曼滤波EKF的GPS-IMU组合定位方法。该方法利用GPS和IMU的互补优势,提高了定位精度和鲁棒性。首先,对GPS和IMU的测量模型进行了分析,建立了状态方程和观测方程。然后,利用扩展卡尔曼滤波EKF对状态方程和观测方程进行估计,得到系统的状态估计值。最后,通过仿真实验验证了该方法的有效性。原创 2024-01-30 12:19:05 · 1080 阅读 · 0 评论 -
【滤波跟踪】基于卡尔曼滤波kalman实现目标滤波跟踪附Matlab代码
在计算机视觉领域,目标滤波跟踪是一个重要的研究课题。其目的是估计目标在视频序列中的位置和状态,以便进行进一步的分析和处理。卡尔曼滤波是一种广泛应用于目标滤波跟踪的算法,它能够有效地处理噪声和不确定性,并提供准确的估计结果。卡尔曼滤波是一种广泛应用于目标滤波跟踪的算法,它能够有效地处理噪声和不确定性,并提供准确的估计结果。卡尔曼滤波在目标滤波跟踪中具有鲁棒性强、实时性好、计算量小的优势。原创 2024-01-14 13:29:42 · 877 阅读 · 0 评论 -
【信息融合】基于扩展卡尔曼滤波实现雷达数据和红外数据融合附Matlab代码
信息融合技术是指通过对多源信息进行有效整合和处理,从而获取比单一信息源更完整和精确的信息的一种技术。随着传感器技术的发展,多源信息融合成为信息获取的主流手段。雷达和红外传感器都是重要的目标检测传感器,它们具有不同的工作原理,可以互补各自的不足。将两者数据进行融合可以提升目标检测的精度和可靠性。扩展卡尔曼滤波(Extended Kalman Filter, EKF)是一种非线性状态估计技术,它通过线性化处理,将卡尔曼滤波推广应用于非线性系统。原创 2023-12-30 18:00:18 · 1139 阅读 · 0 评论 -
【数据融合】基于kalman滤波实现导航数据融合附Matlab代码
导航系统的数据融合技术是实现高精度定位的重要一环。随着各种导航传感器的发展,如惯性传感器、卫星定位模块、视觉传感器等,单个传感器难以满足实时高精度定位的需求。因此,如何有效地融合这些不同传感器采集到的定位数据,从而提高整体导航系统的精度就显得尤为重要。卡尔曼滤波是一种广泛应用的数据融合算法。它通过建立状态空间模型和观测模型,利用贝叶斯推断的思想,在每次观测更新后都能实时估计系统状态的最优值。原创 2023-12-30 17:43:52 · 918 阅读 · 0 评论 -
【滤波跟踪】基于卡尔曼滤波实现GPS+IMU两个传感器滤波融合定位附Matlab代码
滤波跟踪技术在现代定位系统中扮演着至关重要的角色。特别是在利用GPS和IMU两种传感器进行定位时,滤波跟踪技术能够通过融合两种传感器的数据,提高定位的准确性和稳定性。本文将介绍基于卡尔曼滤波的GPS+IMU两个传感器滤波融合定位技术。首先,让我们来了解一下GPS和IMU两种传感器的特点。GPS传感器通过接收卫星信号来获取位置信息,但在城市峡谷、密集林木等遮挡物较多的环境下,GPS信号容易受到干扰,导致定位精度下降。原创 2023-12-26 23:19:16 · 1139 阅读 · 0 评论 -
【信息融合】基于多检测概率数据关联的融合算法MDPDA算法的水下潜艇与航行器信息融合附Matlab代码
信息融合在水下潜艇与航行器领域中扮演着至关重要的角色。随着科技的不断发展,水下潜艇和航行器的使用越来越广泛,因此如何有效地融合它们的信息成为了一个备受关注的话题。本文将重点介绍基于多检测概率数据关联的融合算法MDPDA算法在水下潜艇与航行器信息融合中的应用。首先,让我们来了解一下MDPDA算法的基本原理。MDPDA算法是一种基于多检测概率数据关联的融合算法,它可以有效地处理来自多个传感器的信息,并将它们进行有效地融合。该算法通过对传感器数据进行概率数据关联,从而得到更加准确和可靠的信息融合结果。原创 2023-12-23 22:45:19 · 930 阅读 · 0 评论 -
【滤波跟踪】基于距离的强跟踪卡尔曼滤波STEKF和EKF实现目标追踪附Mtalab代码
滤波跟踪是目标追踪领域中的重要技术之一,它通过对目标位置和速度进行估计和预测,从而实现对目标的跟踪和预测。在滤波跟踪中,卡尔曼滤波是最常用的方法之一,它通过对目标状态进行动态建模和不确定性的估计,实现对目标状态的最优估计和预测。在本文中,我们将介绍基于距离的强跟踪卡尔曼滤波(STEKF)和扩展卡尔曼滤波(EKF)在目标追踪中的应用和实现。首先,让我们来了解一下基于距离的强跟踪卡尔曼滤波(STEKF)的原理和实现。原创 2023-12-20 10:01:00 · 990 阅读 · 0 评论 -
【船舶控制】基于快速终端滑模控制方法的水面无人船舶镇定控制附Matlab代码
水面无人船舶技术的发展已经成为无人船舶领域的热点研究方向之一。在实际应用中,水面无人船舶需要具备较强的镇定控制能力,以应对海洋环境的复杂性和多变性。针对这一问题,基于快速终端滑模控制方法的水面无人船舶镇定控制成为了研究的重点之一。快速终端滑模控制方法是一种针对非线性系统设计的控制方法,其特点是具有较强的鲁棒性和快速的响应速度。在水面无人船舶的镇定控制中,快速终端滑模控制方法可以有效地克服海洋环境的不确定性和外部扰动,保证无人船舶的稳定性和安全性。原创 2023-12-03 12:34:39 · 1032 阅读 · 0 评论 -
【船舶控制】基于无源滤波器实现风浪环境下的船舶滤波跟踪附Matlab代码
在航海领域,船舶的滤波跟踪是一项至关重要的技术。特别是在风浪环境下,船舶的运动受到外部环境的影响,需要通过滤波器来对其位置和运动进行跟踪和修正。在这种情况下,基于无源滤波器的技术可以发挥重要作用,帮助船舶在复杂环境下保持稳定的运动轨迹。无源滤波器是一种利用被动元件(如电感、电容、电阻等)构成的电路,能够根据输入信号的频率特性对信号进行滤波和处理的装置。在船舶滤波跟踪中,无源滤波器可以通过对船舶运动和环境干扰信号进行频率分析和处理,从而实现对船舶位置和运动的精准跟踪和修正。原创 2023-12-03 12:28:41 · 937 阅读 · 0 评论