雷达系列教程matlab代码
文章平均质量分 82
涵盖无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配等领域matlab仿真展示,订阅后私信博主领取无人机matlab代码礼包一份
优惠券已抵扣
余额抵扣
还需支付
¥299.90
¥399.90
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
天天Matlab科研工作室
:某大厂资深算法工程师,从事Matlab算法仿真工作10年,擅长智能优化算法、神经网络预测、机器学习、信号处理、元胞自动机、图像处理、路径规划、无人机、无线传感器网络、车间调度、生产调度等多种领域的Matlab仿真,更多仿真源码、算法改进、Matlab项目和期刊发表可私信合作。
展开
-
【路径规划】基于模拟退火算法求解多车型路径规划问题matlab源码
一、简介模拟退火算法介绍3 模拟退火算法的参数模拟退火是一种优化算法,它本身是不能独立存在的,需要有一个应用场合,其中温度就是模拟退火需要优化的参数,如果它应用到了聚类分析中,那么就是说聚类分析中有某个或者某几个参数需要优化,而这个参数,或者参数集就是温度所代表的。它可以是某项指标,某项关联度,某个距离等等。二、源代码clear allclose allclctic%% 基础参数输入NIND=100; %种群大小MAXGEN=200;原创 2021-09-09 06:48:39 · 49 阅读 · 0 评论 -
【路径规划】基于粒子群算法机器人避障路径规划matlab源码含GUI
1 粒子群算法的概念粒子群优化算法(PSO:Particle swarm optimization) 是一种进化计算技术(evolutionary computation)。源于对鸟群捕食的行为研究。粒子群优化算法的基本思想:是通过群体中个体之间的协作和信息共享来寻找最优解.PSO的优势:在于简单容易实现并且没有许多参数的调节。目前已被广泛应用于函数优化、神经网络训练、模糊系统控制以及其他遗传算法的应用领域。2 粒子群算法分析2.1基本思想。原创 2021-09-09 06:48:18 · 56 阅读 · 0 评论 -
【水果蔬菜识别】基于形态学实现水果蔬菜识别matlab源码含GUI
一、简介数学形态学操作可以分为二值形态学和灰度形态学,灰度形态学由二值形态学扩展而来。数学形态学有2个基本的运算,即腐蚀和膨胀,而腐蚀和膨胀通过结合又形成了开运算和闭运算。开运算就是先腐蚀再膨胀,闭运算就是先膨胀再腐蚀。1 二值形态学粗略的说,腐蚀可以使目标区域范围“变小”,其实质造成图像的边界收缩,可以用来消除小且无意义的目标物。式子表达为:该式子表示用结构B腐蚀A,需要注意的是B中需要定义一个原点,【而B的移动的过程与卷积核移动的过程一致,同卷积核与图像有重叠之后再计算一样】当B的原点平移原创 2021-09-09 06:48:25 · 55 阅读 · 0 评论 -
【语音识别】基于BP神经网络的语音情感识别matlab源码
一、简介BP网络(Back Propagation),是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。在人工神经网络发展历史中,很长一段时间里没有找到隐层的连接权值调整问题的有效算法。直到误差反向传播算法(BP算法)的提出,成功地解决了求解非线性连续函数的多层前馈神经网络权重调整问题。BP (Back P原创 2021-09-09 06:50:37 · 63 阅读 · 0 评论 -
【图像分割】基于灰狼算法优化最小交叉熵多阈值图像分割matalb源码
一、简介1 前言:灰狼优化算法(Grey Wolf Optimizer,GWO)由澳大利亚格里菲斯大学学者 Mirjalili 等人于2014年提出来的一种群智能优化算法。该算法受到了灰狼捕食猎物活动的启发而开发的一种优化搜索方法,它具有较强的收敛性能、参数少、易实现等特点。近年来受到了学者的广泛关注,它己被成功地应用到了车间调度、参数优化、图像分类等领域中。2 算法原理:灰狼隶属于群居生活的犬科动物,且处于食物链的顶层。灰狼严格遵守着一个社会支配等级关系。如图:社会等级第一层:狼群中的头狼记为原创 2021-09-09 06:48:53 · 66 阅读 · 0 评论 -
【数学建模】冰山运输系统matlab源码含GUI
一、简介基于matlab GUI模拟冰山运输系统(参可调数)二、源代码function varargout = bingshan(varargin)% BINGSHAN MATLAB code for bingshan.fig% BINGSHAN, by itself, creates a new BINGSHAN or raises the existing% singleton*.%% H = BINGSHAN returns the handle原创 2021-09-09 06:49:24 · 199 阅读 · 0 评论 -
【路径规划】基于A星算法的无人机三维路径规划matlab源码
Ok ,现在你已经看完了整个的介绍,现在我们把所有步骤放在一起:1. 把起点加入 open list。2. 重复如下过程:a. 遍历 open list ,查找 F 值最小的节点,把它作为当前要处理的节点。b. 把这个节点移到 close list。c. 对当前方格的 8 个相邻方格的每一个方格?◆ 如果它是不可抵达的或者它在 close list 中,忽略它。否则,做如下操作。原创 2021-08-31 00:15:58 · 100 阅读 · 0 评论 -
【路径规划】A*算法解决三维路径规划问题
A*算法A算法是一种典型的启发式搜索算法,建立在Dijkstra算法的基础之上,广泛应用于游戏地图、现实世界中,用来寻找两点之间的最短路径。A算法最主要的是维护了一个启发式估价函数,如式(1)所示。f(n)=g(n)+h(n)(1)其中,f(n)是算法在搜索到每个节点时,其对应的启发函数。它由两部分组成,第一部分g(n)是起始节点到当前节点实际的通行代价,第二部分h(n)是当前节点到终点的通行代价的估计值。算法每次在扩展时,都选取f(n)值最小的那个节点作为最优路径上的下一个节点。在实际应用原创 2021-08-31 00:15:55 · 43 阅读 · 0 评论 -
【路径规划】基于粒子群的无人机三维路径规划matlab源码
粒子群优化(PSO)是一种基于群体智能的数值优化算法,由社会心理学家James Kennedy和电气工程师Russell Eberhart于1995年提出。自PSO诞生以来,它在许多方面都得到了改进,这一部分将介绍基本的粒子群优化算法原理和过程。2.1 粒子群优化粒子群优化(PSO)是一种群智能算法,其灵感来自于鸟类的群集或鱼群学习,用于解决许多科学和工程领域中出现的非线性、非凸性或组合优化问题。图1 Russel Eberhart和James Kennedy2.1.1 算法思想许.原创 2021-08-30 00:08:05 · 52 阅读 · 0 评论 -
【路径规划】考虑分配次序的多无人机协同目标分配建模与遗传算法求解
首先通过分析UAV分配次序对打击任务总收益的影响, 设计了动态战场环境的更新规则. 将航程代价和任务代价作为惩罚项修正目标函数, 建立了考虑分配次序的UAVs协同目标分配优化模型. 然后针对模型的物理意义改进了遗传算法基因编码方式, 设计了MUCTA遗传算法. 该算法利用状态转移思想, 引进SDR算子获得多种分配次序种群, 同时以单行变异算子修正UAV与目标对应关系, 并采用最优个体法和轮盘赌法筛选子代个体.%本实验目的是验证改进的DE离散目标分配算法的有效性%实验设置:各种环境,调...原创 2021-08-29 00:02:04 · 28 阅读 · 0 评论 -
【路径规划】基于人工蜂群的多无人机三维路径规划
蜜蜂采蜜 自然界中的蜜蜂总能在任何环境下以极高的效率找到优质蜜源,且能适应环境的改变。蜜蜂群的采蜜系统由蜜源、雇佣蜂、非雇佣蜂三部分组成,其中一个蜜源的优劣有很多要素,如蜜源花蜜量的大小、离蜂巢距离的远近、提取的难易程度等;雇佣蜂和特定的蜜源联系并将蜜源信息以一定概率形式告诉同伴;非雇佣蜂的职责是寻找待开采的蜜源,分为跟随蜂和侦查蜂两类,跟随峰是在蜂巢等待而侦查蜂是探测蜂巢周围的新蜜源。蜜蜂采蜜时,蜂巢中的一部分蜜蜂作为侦查蜂,不断并随机地在蜂巢附近寻找蜜源,如果发现了花蜜量超过某个阈值的蜜源,则此..原创 2021-08-29 00:02:10 · 48 阅读 · 0 评论 -
【无人机路径规划】基于人工势场实现无人机编队路径规划matlab源码
人工势场法是局部路径规划的一种比较常用的方法。这种方法假设机器人在一种虚拟力场下运动。一、简介如图所示,机器人在一个二维环境下运动,图中指出了机器人,障碍和目标之间的相对位置。这个图比较清晰的说明了人工势场法的作用,物体的初始点在一个较高的“山头”上,要到达的目标点在“山脚”下,这就形成了一种势场,物体在这种势的引导下,避开障碍物,到达目标点。人工势场包括引力场合斥力场,其中目标点对物体产生引力,引导物体朝向其运动(这一点有点类似于A*算法中的启发函数h)。障碍物对物体产生斥力,避.原创 2021-08-21 00:07:42 · 86 阅读 · 1 评论 -
【无人机布局优化】基于k-mean聚类的无人机布局优化matlab源码
前言kmeans是最简单的聚类算法之一,但是运用十分广泛。最近在工作中也经常遇到这个算法。kmeans一般在数据分析前期使用,选取适当的k,将数据分类后,然后分类研究不同聚类下数据的特点。本文记录学习kmeans算法相关的内容,包括算法原理,收敛性,效果评估聚,最后带上R语言的例子,作为备忘。算法原理kmeans的计算方法如下:1 随机选取k个中心点2 遍历所有数据,将每个数据划分到最近的中心点中3 计算每个聚类的平均值,并作为新的中心点4 重复2-3,直到这k个中线点不再变原创 2021-09-02 12:08:31 · 55 阅读 · 1 评论 -
【路径规划】无人机编队路径规划matlab源码
关于编队飞行研究的问题无外乎以下4个:编队队形的生成:如何将多个无人机进行联系起来,完成编队队形的生成。编队队形的保持:当无人机编队队形形成之后,如何保持且按照系统设定的编队队形进行飞行。编队队形的变换:如果需要变换无人机编队飞行的队形,如何变换无人机编队的队形,即换成队形。编队队形的避障:系统编队飞行时,遇到障碍物时,如何运动飞行从而避开障碍物;在研究无人机编队飞行算法前,需要去了解各个无人机之间的通信方法,通信方式可以将机群的控制方法分为以下几种:集中式控制方法:编队系统..原创 2021-09-08 00:09:21 · 82 阅读 · 0 评论 -
无人机通信网络资源分配与优化matlab源码
%% Program to optimize UAV resource allocation%%close all;clear all;addpath(genpath(['./']));%%load system;% AreaLength = 400;% Users.totNum = 50;% Users.Loc=AreaLength*rand(Users.totNum,2);Users.UAVIndexAssigned=zeros(Users.totNum,1);...原创 2021-08-17 00:07:29 · 32 阅读 · 1 评论