碳排放预测模型 | Python实现基于DT决策树的碳排放预测模型

该博客介绍了基于Python的决策树(DT)模型来预测碳排放。作者首先阐述了碳排放对全球变暖的影响,然后详细说明了如何利用历史经济数据进行监督学习和回归分析。文中提到特征缩放对模型预测的重要性,并提到了相关参考资料。
摘要由CSDN通过智能技术生成


效果一览

12
3

文章概述

碳排放预测模型 | Python实现基于DT决策树的碳排放预测模型

研究内容

碳排放被认为是全球变暖的最主要原因之一。 该项目旨在提供各国碳排放未来趋势的概述以及未来十年的全球趋势预测。 其方法是分析这些国家各种经济因素的历史数据,学习它们,并做出未来预测。

算法选择是继数据清洗和预处理之后机器学习的重要部分之一。 由于它是一个监督学习,并且这个问题需要预测连续值,因此回归算法是遵循的方法。 有几种回归算法。算法进行了训练和测试。

源码设计

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

算法如诗

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值