数据特征工程 | 基于PCA算法(Python)

本文详细介绍了如何使用Python的PCA算法对波士顿房价数据集进行降维处理。通过数据加载、标准化、训练集测试集划分、交叉验证选择降维数量,以及可视化结果,展示了PCA在数据特征工程中的应用。
摘要由CSDN通过智能技术生成

随着数据量的不断增加和数据维度的不断扩展,如何进行高效的数据降维处理成为了一个热门话题。在数据分析领域,PCA算法作为一种常用的数据降维方法,可以对多个特征进行降维,提高计算效率和降低存储空间需求。本文以波士顿房价数据集为例,探讨如何利用PCA算法对房屋价格进行降维。

本文将通过 Python 代码实现 PCA 降维,并使用波士顿房价数据集进行演示。我们将从数据加载、模型训练到 PCA 降维和数据可视化全方位地展示 PCA 的作用和原理。以期读者对 PCA 有更深入的理解。

下面,我们将开始具体讲解。
我们将使用 Pandas 库加载波士顿房价数据集,并通过插值法填充缺失值,从而为后续的降维做好准备。代码如下:

import pandas as pd
import numpy as np
from sklearn.decomposition import PCA
from sklearn.model_selection import train_test_split, cross_val_score
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
import seaborn as sns

加载数据集

data = pd.read_csv(‘HousingData.csv’)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

算法如诗

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值