本文主要是对Knowledge Graphs所涉及的知识进行翻译和记录
本节概述图数据模型以及用于查询和验证它们的语言。
1. 图结构
此节主要介绍一些流行的图结构模型、用于图查询和验证的图语言以及图中上下文的表示。
1.1 模型(Models)
1.1.1 有向边标记图(Directed Edge-labelled Graphs)
简称del图,也被叫做多关系图(multi-relational graph)。
在知识图谱中,节点代表实体,比如Fig.1中的Santiago等;边表示实体之间的二元关系,如Fig.1中的Santa Lucia– c i t y \color{blue}{city} city–>Santiago。
1.1.2 异构图(Heterogeneous Graphs)
异构图与del图类似的是,其边标签和边类型是对应的;不同的是,节点作为异构图本身的一部分,而不是表示为一种特殊关系,如Fig.2所示。
Fig.2中:
同构边(homogeneous):边位于两个相同类型的节点,如 b o r d e r s \color{blue}{borders} borders
异构边(heterogeneous):边位于两个不同类型的节点,如 c a p i t a l \color{blue}{capital} capital
异构图允许通过类型划分节点,并通常假定类型和节点是一对一的关系。
del图中通常则不同,比如Fig.1中零类型的节点Santiago和多类型的节点EID15。
1.1.3 属性图(Property Graphs)
属性图允许一组属性值对或者一个标签与节点和边相连。
例如,考虑对提供航班的航空公司进行建模。在del图中,我们不能直接给像Santiago– f l i g h t \color{blue}{flight} flight–>Arica这样的边进行公司的注释,但是我们可以添加一个表示航班的新节点,并将其与源、目的地、公司和模式连接起来,如Fig.3(a)所示。将此模式应用于大型图可能需要进行重大更改。相反,Fig.3(b)举例说明了一个具有类似数据的属性图,其中边缘上的属性值对表示公司,节点上的属性值对表示纬度和经度,节点/边标签表示节点/缘的类型。虽然尚未标准化,但属性图已用于流行的图形数据库,如Neo4j。虽然更复杂的模型在如何将数据编码为属性图方面提供了更大的灵活性(例如,使用属性图,我们可以继续将飞行建模为Fig.3(b)中的边),可能导致更直观的表示,但这些额外的细节同样需要更复杂的查询语言、形式语义和归纳技术,而不是更简单的图模型,如del图或异构图。
1.1.4 图数据集(Graph Dataset)
图数据集允许管理多个图,并由一组命名图(named graph)和一个默认图(default graph)组成。每个命名图由图ID和图本身组成。默认图是一个没有ID的图,并且如果没有指定图形ID,则引用默认图。
Fig.4提供了一个示例,其中Events和Routes存储在两个命名图中,默认图管理关于